Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T10:29:08.892Z Has data issue: false hasContentIssue false

The influence of ruminal infusion of volatile fatty acids on milk yield and composition and on energy utilization by lactating cows

Published online by Cambridge University Press:  09 March 2007

E. R. Ørskov
Affiliation:
Animal Husbandry Research Division, United States Department of Agriculture, Beltsville, Maryland
W. P. Flatt
Affiliation:
Animal Husbandry Research Division, United States Department of Agriculture, Beltsville, Maryland
P. W. Moe
Affiliation:
Animal Husbandry Research Division, United States Department of Agriculture, Beltsville, Maryland
A. W. Munson
Affiliation:
Animal Husbandry Research Division, United States Department of Agriculture, Beltsville, Maryland
R. W. Hemken
Affiliation:
University of Maryland, College Park, Maryland
I. Katz
Affiliation:
University of Maryland, College Park, Maryland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In an experiment of 3 x 3 latin square design, four lactating Holstein cows were given a basal ration designed to induce low percentages of milk fat. The treatments were (I) basal ration, a pelleted mixture of lucerne hay (20%) and concentrates (80%), with 40 l. of water infused intraruminally, (2) basal ration with acetic acid substituted for 15.4% of the metabolizable energy (ME) and (3) propionic acid substituted for 15.4% of the ME. In the last 3 weeks of the 6-week experimental period respiration trials were carried out in an open-circuit indirect calorimeter. The levels of feeding offered in the three periods were 325, 275 and 225 kcal ME/kg body-weight 0.75 in periods 1, 2 and 3 respectively.

2. No differences were detected in the utilization of the energy of acetic and propionic acids, but there were differences in the partition of energy into milk or body tissues; with acetic acid infusion more energy was secreted as milk and with propionic acid infusion more was deposited in body tissue.

3. There was an increase in milk fat percentage with acetic acid infusion, but not complete recovery to normal. The milk fat percentages were 1.96, 2.58 and 1.92 for treatments 1, 2 and 3 respectively. Acetic acid infusion caused increases in the C12, C14 and C16 fatty acids of milk fat and decreased the proportion of C18:1 fatty acids.

4. It is suggested that the low percentages of milk fat found when cows are given concen- trates could result from a decreased extent of fermentation in the rumen, allowing a greater proportion of the starch consumed to be absorbed as glucose in the small intestine.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1969

References

Armstrong, D. G. & Blaxter, K. L. (1965). Publs Eur. Ass. Anim. Prod. no. 11, p. 59.Google Scholar
Armstrong, D. G. & Blaxter, K. L. (1957). Br. J. Nutr. 11, 413.CrossRefGoogle Scholar
Armstrong, D. G., Blaxter, K. L. & Graham, N. McC. (1957). Br. J. Nutr. 11, 392.CrossRefGoogle Scholar
Armstrong, D. G., Blaxter, K. L., Graham, N. McC. & Wainman, F. W. (1958). Br. J. Nutr. 12, 177.CrossRefGoogle Scholar
Association of Official Agricultural Chemists (1960). Official Methods of Analysis. Washington DC: Association of Official Agricultural Chemists.Google Scholar
Balch, C. C., Balch, D. A., Bartlett, S., Cox, C. P. & Rowland, S. J. (1952). J. Dairy Res. 19, 39.CrossRefGoogle Scholar
Balch, C. C. & Rowland, S. J. (1959). J. Dairy Res. 26, 162.CrossRefGoogle Scholar
Behre, J. A. (1940). J. biol. Chem. 136, 25.CrossRefGoogle Scholar
Brouwer, E. (1965). Publs Eur. Ass. Anim. Prod. no. 11, p. 441.Google Scholar
Emery, R. S., Brown, L. D. & Bell, J. W. (1965). J. Dairy Sci. 48, 1647.CrossRefGoogle Scholar
Flatt, W. P., Moe, P. W., Moore, L. A., Hooven, N. H., Lehman, R. P., Hemken, R. W. & Ørskov, E. R. (1967). EAAP 4th Symposium on Energy Metabolism.Jablonna,nr Warsaw.Google Scholar
Flatt, W. P., Moe, P. W., Munson, A. W. & Cooper, T. (1967). EAAP 4th Symposium on Energy Metabolism.Jablonna,nr Warsaw.Google Scholar
Flatt, W.P., Van Soest, P. J., Sykes, J. F. & Moore, L. A. (1958). Publs Eur. Ass. Anim. Prod. no. 8, P. 53.Google Scholar
Hodgman, C. D. (editor) (1962). Handbook of Chemistry and Physics, 44th ed. Cleveland: The Chemical Rubber Company.Google Scholar
Jorgensen, N. A., Schultz, L. H. & Barr, G. R. (1965). J. Dairy Sci. 48, 1031.CrossRefGoogle Scholar
Karr, M. R., Little, C. O. & Mitchell, G. E. Jr (1966). J. Anim. Sci. 25, 652.CrossRefGoogle Scholar
McClymont, G. L. & Vallance, S. (1962). Proc. Nutr. Soc. 21, xli.Google Scholar
Moe, P. W., Flatt, W. P. (1967). EAAP 4th Symposium on Energy Metabolism.Jablonna,nr Warsaw.Google Scholar
Ørskov, E. R. & Allen, D. M. (1966 a). Br. J. Nutr. 20, 295.CrossRefGoogle Scholar
Ørskov, E. R. & Allen, D. M. (1966 b). Br. J. Nutr. 20, 509.CrossRefGoogle Scholar
Ørskov, E. R. & Allen, D. M. (1966 c). Br. J. Nutr. 20, 519.CrossRefGoogle Scholar
Ørskov, E. R., Flatt, W. P. & Moe, P. W. (1968). J. Dairy Sci. 51, 1429.CrossRefGoogle Scholar
Øarskov, E. R., Hovell, F. D. & Allen, D. M. (1966). Br. J. Nutr. 20, 307.CrossRefGoogle Scholar
Rook, J. A. F. & Balch, C. C. (1961). Br. J. Nutr. 15, 361.CrossRefGoogle Scholar
Rook, J. A. F., Balch, C. C. & Johnson, V. W. (1965). Br. J. Nutr. 19, 93.CrossRefGoogle Scholar
Shaw, J. C. & Ensor, W. L. (1959). J. Dairy Sci. 42, 1238.CrossRefGoogle Scholar
Shaw, J. C., Robinson, R. R., Senger, M. E., Lakshmanan, S. & Lewis, T. R. (1959). J. Nutr. 69, 235.CrossRefGoogle Scholar
Smith, L. W., Flatt, W. P., Barnes, K. A. & Van Soest, P. J. (1965). J. Ass. off. agric. Chem. 48, 1261.Google Scholar
Stanley, R. W., Morita, K. & Ueyama, E. (1964). J. Dairy Sci. 47, 258.CrossRefGoogle Scholar
Stoddard, G. E., Allen, N. N. & Peterson, W. H. (1949). J. Anim. Sci. 8, 630.Google Scholar
Storry, J. E. & Rook, J. A. F. (1966). Br. J. Nutr. 20, 217.CrossRefGoogle Scholar
Tyrrell, H. F. & Reid, J. T. (1965). J. Dairy Sci. 48, 1215.CrossRefGoogle Scholar
Tyznik, W. & Allen, N. N. (1951). J. Dairy Sci. 34, 493.Google Scholar
Udy, D. C. (1956). Nature, Lond. 178, 314.CrossRefGoogle Scholar
Van Soest, P. J. (1963 a). J. Ass. off. agric. Chem. 46, 829.Google Scholar
Van Soest, P. J. (1963 b). J. Dairy Sci. 46, 204.CrossRefGoogle Scholar
Van Soest, P. J. (1965). J. Ass. off. agric. Chem. 48, 785.Google Scholar
Wright, P. L., Grainger, R. B. & Marco, G. J. (1966). J. Nutr. 89, 241.CrossRefGoogle Scholar