Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T09:35:41.234Z Has data issue: false hasContentIssue false

Influence of feeding artificial-formula milks containing docosahexaenoic and arachidonic acids on the postnatal long-chain polyunsaturated fatty acid status of healthy preterm infants

Published online by Cambridge University Press:  09 March 2007

Magritha M. H. P. Foreman-Van Drongelen
Affiliation:
Department of Human Biology, University of Limburg, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
Adriana C. Van Houwelingen
Affiliation:
Department of Human Biology, University of Limburg, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
Arnold D. M. Kester
Affiliation:
Department of Methodology and Statistics, University of Limburg, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
Carlos E. Blanco
Affiliation:
Department of Neonatology, University Hospital Maastricht, P Debyelaan 25, 6229 MX Maastricht, The Netherlands
Tom H. M. Hasaart
Affiliation:
Department of Obstetrics and Gynaecology, University Hospital Maastricht, P Debyelaan 25, 6229 MX Maastricht, The Netherlands
Gerard Hornstra
Affiliation:
Department of Human Biology, University of Limburg, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In view of the importance of long-chain polyunsaturated fatty acids (LCP) for growth and development of fetal and infant neural tissue, the influence of the dietary n-3 and n-6 LCP intake onthe LCP status of forty-three preterm infants (birth weight<1800 g) was studied. Thirty-one formula-fed infants were randomly assigned to receive a conventional formula lacking LCP (n 16), or an 22:6n-3-and 20:4n-6-enriched formula (n 15); twelve infants received their own mother's breast milk. Fatty acid compositions of plasma and erythrocyte (RBC) phospholipids (PL) were determined in umbilical venous blood, in weekly postnatal samples until day 35 of life and, for the formula-fed infants, at 3 months of corrected age. Both in plasma (P < 0·001) and RBC (P < 0.01) PLY, the changes with time until day 35 for 22: 6n-3 and 20:4n-6 in the two groups of formula-fed infants were significantly different, with higher values, comparable with those of human-milk-fed infants, in the LCP-enriched-formula group. At 3 months of corrected age, differences between the two formula-fed groups were even more pronounced. In conclusion, adding 22: 6n-3 and 20:4n-6 to artificial formulas in balanced ratios and in amounts similar to those found in preterm human milk raises both the 22:6n-3 and the 20:4n-6 status of formula-fed preterm infants to values found for human-milk-fed preterm infants. Additional studies are necessary to evaluate the potentially favourable effects of this combined addition on the neurodevelopmental outcome of preterm infants.

Type
Human and Clinical Nutrition
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Birch, E. E., Birch, D. G., Hoffman, D. R. & Uauy, R. (1992 a). Retinal development in a very low birth weight infants fed diets differing in omega-3 fatty acids. Investigations in Ophthalmology and Visual Science 33, 23653276.Google Scholar
Birch, E. E., Birch, D. G., Hoffman, D. R. & Uauy, R. (1992 b). Dietary essential fatty aci supply and visual acuity development. Investigations in Ophthalmology and Visual Science 33, 32423253.Google Scholar
Bligh, E. G. & Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 1117.Google Scholar
Carlson, S. E., Carver, J. D. & House, S. A. (1986 a). High fat diets varying in ratios of polyunsaturated to saturated fatty acid and linoleic to linolenic acid: a comparison of rat neural and red cell membrane phospholipids. Journal of Nutrition 116, 718725.Google Scholar
Carlson, S. E., Cooke, R. J., Rhodes, P. G., Peeples, J. M., Werkman, S. H. & Tolley, E. A. (1991). Long-term feeding of formulas high in linolenic acid and marine oil to very low birth weight infants: phospholipid fatty acids. Pediatric Research 30, 404412.Google Scholar
Carlson, S. E., Cooke, R. J., Werkman, S. H. & Tolley, E. A. (1992 b). First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula. Lipids 27, 901907.Google Scholar
Carlson, S. E., Peeples, J. M., Cooke, R. J. & Werkman, S. H. (1992 b). Effects of docosahexanoate (DHA, 22: 6n-3) supplementation of preterm (PT) infants on arachidonate (AA, 20: 4n-6) and DHA status. Pediatric Research 31, 286A.Google Scholar
Carlson, S. E., Rhodes, P. G. & Ferguson, M. G. (1986 a). Docosahexaenoic acid status of preterm infants at birth and following feeding with human milk or formula. American Journal of Clinical Nutrition 44, 798804.Google Scholar
Carlson, S. E., Rhodes, P. G., Rao, V. S. & Goldgar, D. E. (1987). Effect of fish-oil supplementation in the n-3 fatty acid content of red blood cell membranes in preterm infants. Pediatric Research 21, 507510.Google Scholar
Carlson, S. E., Werkman, S. H., Peeples, J. M., Cooke, R. J. & Tolley, E. A. (1993 a). Arachidonic acid status correlates with first year growth in preterm infants. Proceedings of the National Academy of Sciences, USA 90, 10731077.Google Scholar
Carlson, S. E., Werkman, S. H., Rhodes, Ph. G. & Tolley, E. A. (1993 b). Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. American Journal of Clinical Nutrition 58, 3542.Google Scholar
Carnielli, V. P., Pederzini, F., Luijendijk, I. H. T., Bomaars, W. E. M., Boerlage, A., Degenhart, H. J., Pedrotti, D. & Sauer, P. J. J. (1994). Long chain polyunsaturated fatty acids (LCP) in low birth weight formula at levels found in human colostrum. Pediatric Research 35, 309A.Google Scholar
Chambaz, J., Ravel, D., Manier, M. -C., Pepin, D., Mulliez, N. & Bereziat, G. (1985). Essential fatty acid interconversion in the human fetal liver. Biology of the Neonate 47, 136140.Google Scholar
Chen, Q., Bläckberg, L., Nilsson, A., Sternby, B. & Hernell, O. (1994). Digestion of triacylglycerols containing long-chain polyenoic fatty acids in vitro by colipase-dependent pancreatic lipase and human milk bile salt-stimulated lipase. Biochimica et Biophysica Acta 1210, 239243.Google Scholar
Clandinin, M. T., Chappell, J. E., Heim, T., Swyer, P. R. & Chance, G. W. (1981 a). Fatty acid accretion in fetal and neonatal liver: implications for fatty acid requirements. Early Human Development 5, 714.Google Scholar
Clandinin, M. T., Chappell, J. E., Heim, T., Swyer, P. R. & Chance, G. W. (1981 b). Fatty acid utilization in perinatal de novo synthesis of tissues. Early Human Development 5, 355366.Google Scholar
Clandinin, M. T., Chappell, J. E., Leong, S., Heim, T., Swyer, P. R. & Chance, G. W. (1980 a). Intrauterine fatty acid metion rates in human brain: implications for fatty acid requirements. Early Human Development 4, 121129.Google Scholar
Clandinin, M. T., Chappell, J. E., Leong, S., Heim, T., Swyer, P. R. & Chance, G. W. (1980 b). Extrauterine fatty acid accretion in infant brain: implications for fatty acid requirements. Early Human Development 4, 131138.Google Scholar
Clandinin, M. T., Parrott, A., Van Aerde, J. E., Hervada, A. R. & Lien, E. (1992). Feeding preterm infants a formula containing C2 and C22 fatty acids simulates plasma phospholipid fatty acid composition of infants fed human milk. Early Human Development 31, 4151.Google Scholar
Dallal, G. E. (1988). DESIGN: A supplementary Module for Systat and Sysgraph. Evanston, IL: SYSTAT, Inc.Google Scholar
Dixon, W. J. (1992). BMDP Statistical Software Manual: To Accompany the 7.0 Software Release, vol. 2, pp. 13111352. Berkeley, CA: University of California Press.Google Scholar
Dubowitz, L. M. S., Dubowitz, V. & Goldberg, C. (1970). Clinical assessment of gestational age in the newborn infant. Journal of Pediatrics 77, 110.Google Scholar
Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C. & Logan, R. W. (1992). Infant cerebral cortex fatty acid composition and diet. Lancet 340, 810813.Google Scholar
Fliesler, S. J. & Anderson, R. E. (1983). Chemistry and metabolism of lipids in the vertebrate retina. Progress in Lipid Research 22, 79131.Google Scholar
Foreman-van Drongelen, M. M. H. P., van Houwelingen, A. C., Kester, A. D. M., de Jong, A. E. P., Blanco, C. E., Hasaart, T. H. M. & Hornstra, G. (1995 a). Long chain polyene status of preterm infants with regard to the fatty acid composition of their diet: comparison between absolute and relative fatty acid amounts in plasma and red blood cell phospholipids. British Journal of Nutrition 73, 405422.Google Scholar
Foreman-van Drongelen, M. M. H. P., van Houwelingen, A. C., Kester, A. D. M., Hasaart, T. H. M., Blanco, C. E. & Hornstra, G. (1995 b). Long chain polyunsaturated fatty acids in preterm infants: status at birth and its influence on postnatal levels. Journal of Pediatrics 126, 611618.Google Scholar
Hernell, O. & Bläckberg, L. (1991). Digestion and absorption of human milk lipids. In Encyclopedia of Human Biology, vol. 3, pp. 4756 [Dulbecco, R., editor]. New York: Academic Press.Google Scholar
Hernell, O., Bläckberg, L., Chen, Q., Sternby, B. & Nilsson, A. (1993). Does the bile salt-stimulated lipase of human milk have a role in the use of the milk long-chain polyunsaturated fatty acids? Journal of Gastroenterology and Nutrition 16, 426431.Google Scholar
Hoffman, D. R. & Uauy, R. (1992). Essentiality of dietary ω3 fatty acids for premature infants: plasma and red blood cell fatty acid composition. Lipids 27, 886895.Google Scholar
Holman, R. T. (1977). The deficiency of essential fatty acids. In Polyunsaturated Fatty Acids, vol. 4, pp. 163182 [Kunau, W. and Holman, R. T., editors]. Champaign, IL: American Oil Chemists Society.Google Scholar
Holman, R. T. (1986). Control of polyunsaturated fatty acids in tissue lipids. Journal of the American College of Nutrition 5, 183211.Google Scholar
Innis, S. M. (1992). Plasma and red blood cell fatty acid values as indexes of essential fatty acids in the developing organs of infants fed with milk or formulas. Journal of Pediatrics 120, S78–S86.Google Scholar
Innis, S. M., Foote, K. D., MacKinnon, M. J. & King, D. J. (1990). Plasma and red cell fatty acids of low birthweight infants fed their mothers expressed breast milk or preterm infant formula. American Journal of Clinical Nutrition 51, 9941000.Google Scholar
Jennrich, R. I. & Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics 42, 805820.Google Scholar
Jensen, R. G., Ferris, A. M. & Lammi-Keefe, C. J. (1992). Lipids in human milk and infant formulas. Annual Review of Nutrition 12, 417441.Google Scholar
Jensen, R. G., Hagerty, M. M. & McMahon, K. E. (1978). Lipids of human milk and infant formulas: a review. American Journal of Clinical Nutrition 31, 9901016.Google Scholar
Kloosterman, G. J. (1970). On intrauterine growth, the significance of prenatal care. International Journal of Gynaecology and Obstetrics 8, 895912.Google Scholar
Koletzko, B., Schmidt, E., Bremer, H. J., Haug, M. & Harzer, G. (1989). Effects of dietary long chain polyunsaturated fatty acids on the essential fatty acid status of premature infants. European Journal of Pediatrics 148, 669675.Google Scholar
Lammi-Keefe, C. J. & Jensen, R. G. (1984). Lipids in human milk: a review. 2: Composition and fat-soluble vitamins. Journal of Pediatric Gastroenterology and Nutrition 3, 172198.Google Scholar
Liu, C.-C.F., Carlson, S. E., Rhodes, P. G., Rao, V. S. & Meydrech, E. F. (1987). Increase in plasma phospholipid docosahexaenoic and eicosapentaenoic acids as a reflection of their intake and mode of administration. Pediatric Research 22, 292296.Google Scholar
Luukkainen, P., Salo, M. K., Janas, M. & Nikkari, T. (1995). Fatty acid composition of plasma and red blood cell phospholipids in preterm infants from 2 weeks to 6 months postpartum. Journal of Pediatric Gastroenterology and Nutrition 20, 310315.Google Scholar
Makrides, M., Neumann, M. A., Byard, R. W., Simmer, K. & Gibson, R. A. (1994). Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. American Journal of Clinical Nutrition 60, 189194.Google Scholar
Martinez, M. (1992). Tissue concentration of polyunsaturated fatty acids during early human development. Journal of Pediatrics 120, S129S138.Google Scholar
Martinez, M., Ballabriga, A. & Gil-Gibernou, J. J. (1988). Lipids of the developing human retina: I. Total fatty acids, plasmalogens, and fatty acid composition of ethanolamine and choline phosphoglycerides. Journal of Neuroscience Research 20, 484490.Google Scholar
Martinez, M., Conde, C. & Ballabriga, A. (1974). Some chemical aspects of human brain development. II. Phosphoglyceride fatty acids. Pediatric Research 8, 93102.Google Scholar
Neuringer, M. (1993). Cerebral cortex docosahexaenoic acid is lower in formula-fed than in breast-fed infants. Nutrition Reviews 51, 238241.Google Scholar
Neuringer, M., Connor, W. E., Lin, D. S., Barstad, L. & Luck, S. (1986). Biochemical and functional effects of prenatal and postnatal w3 fatty acid deficiency on retina and brain in rhesus monkeys. Proceedings of the National Academy of Sciences, USA 83, 40214025.Google Scholar
NEVO Foundation (1993). Nederlandse voedingsmiddelentabel 1993 (Dutch Food Composition Table 1993). The Hague, The Netherlands: Voorlichtingsbureau voor de Voeding.Google Scholar
Pita, M. L., Fernandez, M. R., De-Lucchi, C., Medina, A., Martinez-Valverde, A., Uauy, R. & Gil, A. (1988). Changes in the fatty acids pattern of red blood cell phospholipids induced by type of milk, dietary nucleotide supplementation, and postnatal age in preterm infants. Journal of Pediatric Gastroenterology and Nutrition 7, 740747.Google Scholar
Sastry, P. S. (1985). Lipids of nervous tissue: composition and metabolism. Progress in Lipid Research 24, 69176.Google Scholar
Svennerholm, L. (1968). Distribution and fatty acid composition of phosphoglycerides in normal human brain. Journal of Lipide Research 9, 570579.Google Scholar
Uauy, R. (1990). Are w-3 fatty acids required for normal eye and brain development in the human? Journal of Pediatric Gastroenterology and Nutrition 11, 296300.Google Scholar
Uauy, R. D., Birch, D. G., Birch, E. E., Tyson, J. E. & Hoffman, D. R. (1990). Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatric Research 28, 485492.Google Scholar