Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T02:02:47.640Z Has data issue: false hasContentIssue false

Influence of dietary phosphorus and sulphaguanidine levels on P utilization in rats

Published online by Cambridge University Press:  09 March 2007

Robert J. Moore
Affiliation:
Departments of Animal ScienceUniversity of Missouri, Columbia, MO 65211, USA
Philip G. Reeves
Affiliation:
Departments of Biochemistry, University of Missouri, Columbia, MO 65211, USA
Trygve L. Veum
Affiliation:
Departments of Animal ScienceUniversity of Missouri, Columbia, MO 65211, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of dietary phosphorus and sulphaguanidine levels, and sex differences on: (a) phytate digestibility, (b) calcium and P utilization, (c) the activities of alkaline phosphatase (EC 3.1.3.1), alkaline phytase (EC 3.1.3.8) and acid phosphatase (EC 3.1.3.2) in the intestinal mucosa of male and female rats were investigated.

2. There was a linear increase in femur ash, Ca and P contents and the maximum force withstood by the fresh femurs as dietary P level was increased from 1.5 to 3.0 to 4.5 g/kg diet.

3. The apparent digestibilities of Ca, P and phytate-P decreased as the level of P in the diet increased. Rats given the diets with 1.5 or 3.0 g P/kg were hypercalciuric and hypophosphaturic compared with rats receiving 4.5 g P/kg diet.

4. The level of Ca retained was similar for all treatments. The level of P retained increased as the dietary P level increased. This suggests that P deprivation was a result of inadequate amounts of P retained and not due to the absorption of inositol phosphates formed during the enzymic hydrolysis of phytate.

5. The addition of sulphaguanidine increased phytate digestibility without changing the activities of acid and alkaline phosphatase or alkaline phytase of the intestinal mucosa. This suggests that these enzymes did not play a role in the increase in phytate digestibility. However, dietary sulphaguanidine enhanced phytate digestibility, suggesting that alterations in the diet which modify either the composition or metabolism of the gastrointestinal microflora may be beneficial in enhancing the in vivo hydrolysis of phytate.

6. Differences between males and females are reported and discussed.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

REFERENCES

Barr, A. J., Goodnight, J. H., Sall, J. P. & Helwig, J. T. (1979). A User's Guide to SAS-79 Raleigh, NC: Sparks Press.Google Scholar
Bernhart, F. W., Savini, S. & Tomerelli, R. M. (1969). Journal of Nutrition 98, 443448.CrossRefGoogle Scholar
Brautbar, N., Lee, D. B. N., Coburn, J. W. & Kleeman, C. R. (1979). American Journal of Physiology 236, E283E288.Google Scholar
Crenshaw, T. D., Peo, E. R. Jr, Lewis, A. J., Moser, B. D. & Olson, D. (1981). Journal of Animal Science 52, 13191329.CrossRefGoogle Scholar
Davies, N. T. & Flett, A. A. (1978). British Journal of Nutrition 39, 307316.Google Scholar
DeBoland, A. R., Garner, G. B. & O'Dell, B. L. (1975). Journal of Agricultural and Food Chemistry 23, 11861189.CrossRefGoogle Scholar
Ellis, R., Morris, E. R. & Philpot, C. (1977). Analytical Biochemistry 77, 536539.CrossRefGoogle Scholar
Erdman, J. W. Jr (1979). Journal of the American Oil Chemists' Society 56, 736741.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). Journal of Biological Chemistry 66, 375400.CrossRefGoogle Scholar
Gehrke, C. W., Mayer, D. T., Pickett, E. E. & Runyon, C. V. (1950). The Quantitative Determination of Chromic Oxide in Feed and Feces. Research Bulletin no. 469. Columbia: Missouri Agricultural Experiment Station.Google Scholar
Goldenberg, H. & Fernandez, A. (1966). Clinical Chemistry 12, 871882.CrossRefGoogle Scholar
Greaves, M. P., Anderson, G. & Webley, D. M. (1967). Biochimica et Biophysica Acta 132, 412418.Google Scholar
Henry, Y., Gueguen, L. & Rerat, A. (1979). British Journal of Nutrition 42, 127137.CrossRefGoogle Scholar
Kotb, A. R. & Luckey, T. D. (1972). Nutrition Abstracts and Reviews 42, 813845.Google Scholar
Lee, D. B. N., Brautbar, N., Walling, M. W., Silis, V., Coburn, J. W. & Kleeman, C. R. (1979). American Journal of Physiology 236, E451E457.Google Scholar
Lim, P. E. & Tate, M. E. (1973). Biochimica et Biophysica Acta 302, 316328.Google Scholar
Lolas, G. M., Palamidis, N. & Markakis, P. (1976). Cereal Chemistry 53, 867871.Google Scholar
McComb, R. B., Bowers, G. N. & Posen, S. (1979). Alkaline Phosphatase p. 866. New York: Plenum Press.CrossRefGoogle Scholar
Mollgaard, H. (1946). Biochemical Journal 40, 589603.CrossRefGoogle Scholar
Moore, R. J. & Veum, T. L. (1982). Nutrition Reports International 25, 221233.Google Scholar
Moore, R. J. & Veum, T. L. (1983). British Journal of Nutrition 49, 145152.CrossRefGoogle Scholar
Nahapetian, A. & Young, V. R. (1980). Journal of Nutrition 110, 14581472.Google Scholar
Perkin-Elmer Corp. (1971). Methods in Atomic Absorption Spectroscopy. Norwalk, CT: Perkin-Elmer Corp.Google Scholar
Pileggi, V. J. (1959). Archives of Biochemistry and Biophysics 80, 18.CrossRefGoogle Scholar
Ramakrishnan, C. V. & Bhandari, S. D. (1977). Nutrition Reports International 16, 147155.Google Scholar
Savage, J. E., Yohe, E. J. M., Pickett, E. E. & O'Dell, B. L. (1964). Poultry Science 43, 420426.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1980). Statistical Methods 7th ed. Ames, Iowa: Iowa State University Press.Google Scholar
Taylor, T. G. (1980). In Recent Advances in Animal Nutrition-1979 pp. 2333 [Haresign, W. and Lewis, D., editors]. Boston: Butterworths.CrossRefGoogle Scholar
Thomas, W. C. Jr & Tilden, M. T. (1972). Johns Hopkins Medical Journal 131, 133142.Google Scholar
Van Den Berg, C. J., Hill, L. F. & Stanbury, S. W. (1972). Clinical Science 43, 377383.CrossRefGoogle Scholar
Visek, W. J. (1978). Journal of Animal Science 46, 14471469.CrossRefGoogle Scholar
Wise, A. & Gilburt, D. J. (1982). Applied and Environmental Microbiology 43, 753756.CrossRefGoogle Scholar