Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T11:11:31.834Z Has data issue: false hasContentIssue false

Incubation inside the bovine rumen

Published online by Cambridge University Press:  09 March 2007

J. W. Czerkawski
Affiliation:
Hannah Dairy Research Institute, Ayr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Details are given for the construction and use of an apparatus for the incubation of rumen liquor in semi-permeable sacs inside the bovine rumen. It was found practicable, using one animal, to incubate simultaneously samples of strained diluted rumen liquor in three identical vessels, each of 100–120 ml capacity, for periods of up to 23 h.

2. The optimal conditions for experiments of this type were investigated. It was shown that, under the conditions used, the pH value of the reaction mixtures varied little compared with the pH changes that occurred inside the rumen, and that the sampling technique was satisfactory.

3. The effects of the size and type of inoculum were also investigated. The microbial growth, measured by increases in turbidity and in concentration of protein, was greatest when the rumen liquor inoculum constituted about 20% of the reaction mixture and when the protozoa and large food particles were removed.

4. The apparatus was used to study microbial growth and hydrogenation of fatty acids in rumen liquor.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Alexander, R. H. & McGowan, M. (1966). Br. Grassld Soc. 21, 140.CrossRefGoogle Scholar
Balch, C. C. & Cowie, A. T. (1962). Cornell Vet. 52, 206.Google Scholar
Conway, E. J. (1962). In Microdiffusion Analysis and Volumetric Error, p. 234. London: Crosby, Lock-wood and Son Ltd.Google Scholar
Czerkawski, J. W. (1966). Biochem. J. 99, 39P.Google Scholar
Dawson, R. M. C., Ward, P. F. V. & Scott, T. W. (1964). Biochem. J. 90, 9.CrossRefGoogle Scholar
Duncombe, W. G. (1963). Biochem. J. 88, 7.CrossRefGoogle Scholar
Fina, L. R., Keith, C. L., Bartley, E. E., Hartman, P. A. & Jacobson, N. L. (1962). J. Anim. Sci. 21, 930.CrossRefGoogle Scholar
Fina, L. R., Teresa, G. W. & Bartley, E. E. (1958). J. Anim. Sci. 17, 667.CrossRefGoogle Scholar
Folch, J., Lees, M. & Stanley, G. H. S. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Gutierrez, J., Williams, P. P., Davis, R. E. & Warwick, E. J. (1962). Appl. Microbiol. 10, 548.CrossRefGoogle Scholar
Hale, E. B., Duncan, C. W. & Huffman, C. F. (1947). J. Nutr. 34, 747.Google Scholar
Hydén, S. (1961). LantbrHögsk. Annlr 27, 51.Google Scholar
Jacobs, S. (1960). Analyst 85, 257.CrossRefGoogle Scholar
Kates, M. (1964). J. Lipid Res. 5, 132.CrossRefGoogle Scholar
Kepler, C. R., Hirons, K. P., McNeill, J. J. & Toves, S. B. (1965). Fedn Proc. Fedn Am. Socs exp. Biol. 24, 290.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
McDougall, E. I. (1948). Biochem. J. 43, 99.CrossRefGoogle Scholar
Tennies, G. & Feng, F. (1965). Analyt. Biochem. 11, 411.CrossRefGoogle Scholar
Ulyatt, M. J., Czerkawski, J. W. & Blaxter, K. L. (1966). Proc. Nutr. Soc. 25, xviii.Google Scholar
Warner, A. C. I. (1956). J. gen. Microbiol. 14, 733.CrossRefGoogle Scholar
Wilde, P. F. & Dawson, R. M. C. (1966). Biochem. J. 98, 469.Google Scholar