Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T02:28:12.383Z Has data issue: false hasContentIssue false

In vivo threonine oxidation in growing pigs fed on diets with graded levels of threonine*

Published online by Cambridge University Press:  09 March 2007

N. Le Floc'h
Affiliation:
Station de Recherches Porcines, INRA, 35590 Saint Gilles, France
C. Obled
Affiliation:
Luboratoire d'Étude du Métabolisme Azoté, INRA, 63122 Ceyrat, France
B. Sève
Affiliation:
Station de Recherches Porcines, INRA, 35590 Saint Gilles, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Threonine oxidation to glycine was investigated in vivo in twelve growing pigs (27·4 kg live weight) fed on one of the following three diets with graded levels of threonine supply: a low-threonine diet (LT), a control well-balanced diet (C) or a high-threonine diet (HT), during 10h constant infusion of L-[1-13C]threonine and [2-3H]glycine in the cranial vena cava and [l-14C]glycine in the portal vein.13C-threonine and glycine enrichments and [3H]glycine and [14C]glycine specific radioactivities (SR) were determined at plateau in peripheral venous plasma, liver and pancreas. Glycine praduction rates calculated from plasma [2-3H]glycine or [1-14C]glycine SR gave similar values suggesting that [l-14C]glycine SR could be used in order to estimate whole-body glycine flux. The high pancreas [1-13C]glycine enrichment provided evidence that the pancreas may be, with the liver, a major site of threonine oxidation to glycine. Moreover, the present findings suggest that threonine transport into the Liver could be the limiting step of threonine oxidation in this tissue when dietary threonine supply is low. Total threonine oxidation to glycine, calculated from plasma values of enrichment and specific radioactivity, was low and constant when the estimated absorbed threonine was lower than 4 g/d and increased for higher amounts of absorbed threonine.

Type
Dietary threonine and oxidation in pigs
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Aoyama, Y. & Motokawa, Y. (1981). l-threonine dehydrogenase of chicken liver: purification, characterization and physiological significance. Journal of Biological Chemistry 256, 1236712373.CrossRefGoogle ScholarPubMed
Baker, D. H. & Chung, T. K. (1992). Ideal protein for swine and poultry. Kyowa Hakko Technical Review 4.Google Scholar
Ballèvre, O., Cadenhead, A., Calder, A. G., Rees, W. D., Lobley, G. E., Fuller, M. F. & Garlick, P. J. (1990). Quantitative partition of threonine oxidation in pigs: effect of dietary threonine. American Journal of Physiology 261, E483E491.Google Scholar
Ballèvre, O., Houlier, M. L., Prugnaud, J., Bayle, G., Bercovici, D., Sève, B. & Arnal, M. (1991 a). Altered partition of threonine metabolism in pigs by protein-free feeding or starvation. American Journal of Physiology 261, E748E757.Google ScholarPubMed
Ballèvre, O., Prugnaud, J., Houlier, M. L. & Amal, M. (1991 b). Assessment of threonine metabolism in vivo by gas chromatography/mass spectrometry and stable isotope infusion. Analytical Biochemistry 193, 212219.CrossRefGoogle ScholarPubMed
Bird, M. I., Nunn, P. B. & Lord, L. A. J. (1984). Formation of glycine and aminoacetone from l-threonine by rat liver mitochondria. Biochimica et Biophysica Acta 802, 229236.CrossRefGoogle ScholarPubMed
Bloxam, D. L. (1975). Restriction of hepatic gluconeogenesis and ureogenesis from threonine when at low concentrations. American Journal of Physiology 229, 17181723.CrossRefGoogle ScholarPubMed
Campbell, R. G. & Taverner, M. R. (1988). The tissue and dietary protein and amino acid requirements of pigs from 8·0 to 20·0 kg live weight. Animal Production 46, 283290.Google Scholar
Chavez, E. R. & Bayley, H. S. (1976). Amino acid metabolism in the piglet. 2. Influence of fasting on plasma free amino acid concentration and in vivo oxidation of methionine, isoleucine and threonine. British Journal of Nutrition 36, 189198.Google ScholarPubMed
Christensen, H. N., Curthoys, N. P., Mortimore, G. E., Smith, R. J., Goldstein, L. & Harper, A. E. (1986). Interorgan transport. Federation Proceedings 45, 21652183.Google Scholar
Cochran, W. G. & Cox, G. M. (1957). Experimental Designs. New York: Wiley.Google Scholar
Dale, R. A. (1978). Catabolism of threonine in mammals by coupling of l-threonine-3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochimica et Biophysica Acta 544, 496503CrossRefGoogle ScholarPubMed
Davis, A. T. & Austic, R. E. (1982). threonine-degrading enzymes in the chicken. Poultry Science 61, 21072111.CrossRefGoogle ScholarPubMed
Davis, A. T. & Austic, R. E. (1994). Dietary threonine imbalance alters threonine dehydrogenase activity in isolated hepatic mitochondria of chicks and rats. Journal of Nutrition 124, 16671677.CrossRefGoogle ScholarPubMed
Egan, A. R., MacRae, J. C. & Lamb, C. S. (1983). Threonine metabolism in sheep 1. The catabolism and gluconeogenesis in mature blackface wethers given poor quality hill herbage. Journal of Nutrition 49, 373383.CrossRefGoogle ScholarPubMed
Freedland, R. A. & Avery, E. H. (1964). Studies on threonine and serine dehydrase. Journal of Biological Chemistry 239, 33573360.CrossRefGoogle ScholarPubMed
Fuller, M. F., Wang, W. T. C. & Giles, L. R. (1989). The optimum dietary amino acid pattern for growing pigs. 2. Requirements for maintenance and for tissue protein accretion. British Journal of Nutrition 62, 255267.CrossRefGoogle ScholarPubMed
Gabriel, S. & Colman, J. (1902). Zur kenntniss des amidoacetones (Knowledge of aminoacetone). Berichte der Deutschen Chemishen Gesellschast 35, 38053811.CrossRefGoogle Scholar
Kang-Lee, Y. A. E. & Harper, A. E. (1978). Threonine metabolism in vivo: effect of threonine intake and prior induction of threonine dehydratase in rats. Journal of Nutrition 108, 163175.CrossRefGoogle ScholarPubMed
Katz, J., Okajima, F., Chenoweth, M. & Dunn, A. (1981). The determination of lactate turnover in vivo with 14C labelled lactate: the significance of sites of tracer administration and sampling. Biochemical Journal 194, 513524.CrossRefGoogle ScholarPubMed
Le Floc'h, N., Sève, B. & Henry, Y. (1994). The addition of glutamic acid or protein to a threonine-deficient diet differentially affects growth performance and threonine dehydrogenase activity in fattening pigs. Journal of Nutrition 124, 19871995.CrossRefGoogle ScholarPubMed
Le Floc'h, N., Obled, C. & Sève, B. (1995). In vivo threonine oxidation is dependent on threonine dietary supply in growing pigs fed low to adequate levels. Journal of Nutrition 125, 25502562.Google ScholarPubMed
Read, W. W., Read, M. A., Rennie, M. J., Griggs, R. C. & Halliday, D. (1984). Preparation of CO2, from blood and protein-bound carboxyl groups for quantification and 13C-isotopes measurements. Biomedical Mass Spectrometry 11, 348352.CrossRefGoogle Scholar
Rérat, A., Simoes-Nuñes, C., Mendy, F., Vaissade, P. & Vaugelade, P. (1992). Splanchnic fluxes of amino acids after duodenal infusion of carbohydrate solutions containing free amino acids or oligopeptides in the non-anaesthetized pig. British Journal of Nutrition 68, 111138.CrossRefGoogle ScholarPubMed
Rosell, V. L. & Zimmerman, D. R. (1984). Effects of excess arginine and threonine on performance, plasma metabolites and certain liver enzyme activities in weanling pigs. Nutrition Reports International 29, 13451351.Google Scholar
Shipley, R. A. & Clark, R. E. (1972). Tracer Methodr for In Vivo Kinetics. Theory and Applications. New York: Academic Press.Google Scholar
Statistical Analysis Systems (1989). SAS User's Guide: Statistics. Cary, NC: SAS Institute Inc.Google Scholar
Tressel, T., Thompson, R., Zieske, L. R., Menendez, M. I. T. S. & Davis, L. (1986). Interaction between l-threonine dehydrogenase and aminoacetone synthetase and mechanism of aminoacetone production. Journal of Biological Chemistry 261, 1642816437.CrossRefGoogle ScholarPubMed
Zhao, X., Wen, Z. M., Meredith, C. E., Matthews, D. E., Bier, D. M. & Young, V. R. (1986). Threonine kinetics at graded threonine intakes in young men. American Journal of Clinical Nutrition 43, 795802.CrossRefGoogle ScholarPubMed