Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T17:21:13.805Z Has data issue: false hasContentIssue false

The in vitro metabolism of 25-hydroxycholecalciferol by pig kidney: effect of low dietary levels of calcium and phosphorus

Published online by Cambridge University Press:  09 March 2007

Barbara A. Sommerville
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds LS2 9JT
J. Fox
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds LS2 9JT
A. D. Care
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds LS2 9JT
R. Swaminathan
Affiliation:
Department of Chemical Pathology, The General Infirmary, Leeds LS1 3EX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Homogenates of pig kidney incubated in vitro convert 25-hydroxycholecalciferol to the dihydroxy-metabolites almost as efficiently as homogenates of chick kidney under similar conditions.

2. The cortex of the kidney carries out this conversion more efficiently than does the medulla.

3. Kidneys from pigs given low calcium or low phosphorus diets produce about 40 % more 1,25-dihydroxy cholecalciferol than those from pigs given diets containing normal levels of Ca and P.

Type
Short Papers
Copyright
Copyright © The Nutrition Society 1978

References

Baxter, L. A. & DeLuca, H. F. (1976). J. biol. Chem. 251, 3158.CrossRefGoogle Scholar
Botham, K. M., Tanaka, Y. & DeLuca, H. F. (1974). Biochemistry 13, 4961.CrossRefGoogle Scholar
Botham, K. M., Ghazarian, J. G., Kream, B. E. & DeLuca, H. F. (1976). Biochem. J. 15, 2130.CrossRefGoogle Scholar
Corradino, R. A. (1973). J. cell Biol. 58, 64.CrossRefGoogle Scholar
Frazer, D. R. & Kodicek, E. (1970). Nature, Lond. 228, 764.CrossRefGoogle Scholar
Garabedian, M., Holick, M. F., DeLuca, H. F. & Boyle, I. T. (1972). Proc. natn. Acad. Sci. U.S.A. 69, 1673.CrossRefGoogle Scholar
Haussler, M. R., Hughes, M. R., Baylink, D. T., Littledike, E. T., Cork, D. & Pitt, M. (1977). Adv. Med. Biol. 81, 233.CrossRefGoogle Scholar
Henry, H. L., Midgett, R. J. & Norman, A. W. (1974). J. biol. Chem. 249, 7584.CrossRefGoogle Scholar
Henry, H. L. & Norman, A. W. (1975). Comp. Biochem. Physiol. 50B, 431.Google Scholar
Holick, M. F., Schnoes, H. K., DeLuca, H. F., Gray, R. W., Boyle, I. T. & Suda, T. (1972). Biochemistry 11, 4251.CrossRefGoogle Scholar
Midgett, R. J., Spielvogel, A. M., Coburn, J. W. & Norman, A. W. (1973). J. clin. Endocr. Metab. 36, 1153CrossRefGoogle Scholar
Omdahl, J. L., Gray, R. W., Boyle, I. T., Knutson, J. & DeLuca, H. F. (1972). Nature, New Biol. 237, 63.CrossRefGoogle Scholar
Ponchon, G., Kennan, A. L. & DeLuca, H. F. (1969). J. clin. Invest. 48, 2032.CrossRefGoogle Scholar
Rosenthal, A. M., Jones, G., Kooh, S. W. & Frazer, D. (1977). Proceedings and Abstracts 6th Parathyroid. Conference, University of British Columbia, Canada, June 12–17, 1977, p. 159.Google Scholar
Sommerville, B. A., Swaminathan, R. & Care, A. D. (1978). Br. J. Nutr. 39, 411.CrossRefGoogle Scholar
Spanos, E., Barrett, D. I. & MacIntyre, I. (1978). J. Endocr. (In the Press.)Google Scholar
Swaminathan, R., Sommerville, B. A. & Care, A. D. (1977). Br. J. Nutr. 38, 47.CrossRefGoogle Scholar
Swaminathan, R., Sommerville, B. A. & Care, A. D. (1978). Clin. Sci. Mol. Med. 54. (In the Press.)Google Scholar
Tanaka, Y., Frank, H. & DeLuca, H. F. (1973). Science, N. Y. 181, 564.CrossRefGoogle Scholar
Technicon Instruments Co. Ltd (1966). Technicon Methodology Sheets N-3b, 4b. Basingstoke, Hants: Technicon Instruments Co. Ltd.Google Scholar