Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T02:17:46.706Z Has data issue: false hasContentIssue false

In vitro energy costs of NA+, K+ ATPase activity and protein synthesis in muscle from calves differing in age and breed

Published online by Cambridge University Press:  09 March 2007

V. A. Gregg
Affiliation:
Department of Animal Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
L. P. Milligan
Affiliation:
Department of Animal Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. An in vitro preparation was used to measure rates of oxygen consumption, Na+, K+-ATPase-dependent respiration, [14C]phenylalanine incorporation and tyrosine release of skeletal (stenomandibularis) muscle from 10-21 -d-old (three) and 7-month dairy (three) calves and control (CDM; four) and extreme double-muscled (EDM; two) calves.

2. Rate of oxygen consumption was greatest (P < 0.001) for muscle from 10.21-d-old dairy calves and lowest (P < 0.05) for CDM calves.

3. Ouabain (10−6 M) caused a 40% inhibition of muscle respiration.

4. Na+, K+-ATPase-dependent respiration was similar for muscle from all calf groups except 10-21-d-old dairy calves which had a value 26% greater (P < 0.001) than that of older dairy calves.

5. Na+, K+-ATPase-independent respiration was 16% greater (P < 0.001) for muscle from 10.21-d-old than that of older dairy calves while muscle from EDM calves had a value 11 % greater than that of CDM caives.

6. The rate of [14C]phenylalanine incorporation was greater (P < 0.05) for muscle from 10-21-d-old dairy than from older dairy calves, similar between older dairy and CDM calves, and decreased (P < 0.05) for EDM calves.

7. Rate of tyrosine release was greatest (P < 0.05) for muscle from CDM and EDM calves: both dairy groups had similarly low rates of muscle tyrosine release.

8. The energy estimated to be required for peptide bond synthesis accounted for 2.0–3.3% of the O2 consumption of the muscle preparations.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Asano, Y., Liberman, U. A. & Edelman, I. S. (1976). J. clin. Invest. 57, 368.CrossRefGoogle Scholar
Bergman, E. N., Kaufman, C. F., Wolff, J. E. & Williams, H. H. (1974). Am. J. Physiol. 226, 833.CrossRefGoogle Scholar
Chang, T. W. & Goldberg, A. L. (1978). J. biol. Chem. 253, 3685.CrossRefGoogle Scholar
Chinet, A., Clausen, T. & Girardier, L. (1977). J. Physiol., Lond. 265, 43.CrossRefGoogle Scholar
Folke, M. & Sestoft, L. (1977). J. Physiol., Lond. 269, 407.CrossRefGoogle Scholar
Fulks, R. M., Li, J. B. & Goldberg, A. L. (1975). J. biol. Chem. 250, 290.CrossRefGoogle Scholar
Garlick, P. J. (1980). In Protein Deposition in Animals p. 51 [Buttery, P. J. and Lindsay, D. B., editors]. London: Butterworths.CrossRefGoogle Scholar
Gregg, V. A. & Milligan, L. P. (1980 a). Gen. Pharmac. 11, 323.CrossRefGoogle Scholar
Gregg, V. A. & Milligan, L. P. (1980 b). Biochem. Biophys. Res. Comm. 95, 608.CrossRefGoogle Scholar
Gregg, V. A. & Milligan, L. P. (1982). Can. J. Anim. Sci. (In the Press).Google Scholar
Himms-Hagen, J. (1976). A. Rev. Physiol. 38, 315.CrossRefGoogle Scholar
Holmes, J. H. G. & Ashmore, C. R. (1972). Growth 36, 351.Google Scholar
Ismail-Beigi, F. & Edelman, I. S. (1970). Proc. Natl Acad. Sci. USA 67, 1071.CrossRefGoogle Scholar
Lobley, G. E., Milne, V., Lovie, J. M., Reeds, P. J. & Pennie, K. (1980). Br. J. Nutr. 43, 491.CrossRefGoogle Scholar
Lobley, G. E., Reeds, P. J. & Pennie, K. (1978). Br. J. Nutr. 37, 96A.Google Scholar
McBride, R. W., Jolly, D. W., Kadis, B. M. & Nelson, T. E. (1979). J. Chromat. 168, 290.CrossRefGoogle Scholar
McKee, E. E., Cheung, J. Y., Rannels, E. & Morgan, H. E. (1978). J. biol. Chem. 253, 1030.CrossRefGoogle Scholar
Reeds, P. J., Cadenhead, A., Fuller, M. F., Lobley, G. E. & McDonald, J. D. (1980). Br. J. Nutr. 43, 445.CrossRefGoogle Scholar
Scholnick, P., Lang, D. & Racker, E. (1973). J. biol. Chem. 248, 5175.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1960). Principles and Procedures of Statistics. New York: McGraw-Hill, Inc.Google Scholar
Tobin, T. & Brody, T. M. (1972). Biochem. Pharmac. 21, 1553.CrossRefGoogle Scholar
Waalkes, T. P. & Udenfriend, S. (1957). J. Lab. clin. Med. 50, 733.Google Scholar
Webster, A. J. F., Brockway, J. M. & Smith, J. S. (1974). Anim. Prod. 19, 127.Google Scholar
Whittam, R. (1961). Nature, Lond. (1974). 191, 603.CrossRefGoogle Scholar