Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T16:29:47.941Z Has data issue: false hasContentIssue false

Improved nitrogen metabolism in rats fed on lipid-rich liquid diets

Published online by Cambridge University Press:  17 March 2008

Ernesto Estornell
Affiliation:
Departament de Bioquímica i Biologia Molecular, Universitat de Valéncia, Facultat de Farmácia, Avgda Blasco Ibáñez 17, 46010-Valéncia, Spain
Teresa Barber
Affiliation:
Departament de Bioquímica i Biologia Molecular, Universitat de Valéncia, Facultat de Farmácia, Avgda Blasco Ibáñez 17, 46010-Valéncia, Spain
José Cabo
Affiliation:
Departament de Bioquímica i Biologia Molecular, Universitat de Valéncia, Facultat de Medicina i Odontologia, Avgda Blasco Ibáñez 17, 46010-Valéncia, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

N metabolism was studied in young rats fed on lipid-rich, isonitrogenous, purified liquid diets, a convenient and easy technique for inducing voluntary overfeeding of energy and lipids under controlled nutritional conditions. Overfed rats showed a marked N retention at the expense of a reduced production of urea. The capacities of isolated hepatocytes to synthesize urea and glucose from added precursors were greatly diminished. The activities of the urea cycle enzymes and several enzymes involved in the availability of NH3, for this pathway were concomitantly reduced in overfed animals. Therefore, our results showed an improved N metabolism in overfed rats promoted by the overfeeding of lipids that could be due to an enhanced biosynthetic utilization and a reduced catabolism of amino acids. In addition, the versatile and accurate technique for inducing overfeeding in young rats used in the present study could have many advantages for nutritional studies.

Type
Interactions between nitrogen and lipid metabolism
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

American Institute of Nutrition (1977). Report of the Ad Hoc Committee on standards for nutritional studies. Journal of Nutrition 107, 1341348.Google Scholar
Baginski, E. S., FOB, P. P. & Zak, B. (1974). Glucose-6-phosphatase. In Methods of Enzymatic Analysis, vol. 2, 2nd ed. pp. 876880 [Bergmeyer, H. U, editor]. New York: Academic Press.CrossRefGoogle Scholar
Baltzell, J. K. & Berdanier, C. D. (1985). Effect of the interaction of dietary carbohydrate and fat on the responses of rats to starvation-refeeding. Journal of Nutrition 115, 1041 110.CrossRefGoogle ScholarPubMed
Barber, T., Estornell, E., Estellis, R., Gbmez, D. & Cabo, J. (1987). Studies on the role of insulin in N metabolism changes in cafeteria-fed rats. Molecular and Cellular Endocrinology 50, 1522.CrossRefGoogle Scholar
Barber, T., Viiia, J. R., Viiia, J. & Cabo, J. (1985). Decreased urea synthesis in cafeteria-diet-induced obesity in the rat. Biochemical Journal 230, 675681.CrossRefGoogle ScholarPubMed
Bergmeyer, H. U. & Bernt, E. (1974 a). D-glucose: Determination with glucose oxidase and peroxidase. In Methods of Enzymatic Analysis, vol. 3, 2nd ed. pp. 12051215 [Bergmeyer, H. U, editor]. New York: Academic Press.Google Scholar
Bergmeyer, H. U. & Bernt, E. (1974 b). Glutamate-oxaloacetate transaminase: UV assay, manual method. In Methods ofEnzymatic Analysis, vol. 2, 2nd ed. pp. 727733 [H. U., Bergmeyer, editor]. New York: Academic Press.CrossRefGoogle Scholar
Bergmeyer, H. U. & Bernt, E. (1974 c). Glutamate-pyruvate transaminase: UV assay, manual method. In Methods of Enzymatic Analysis, vol. 2, 2nd ed. pp. 752758 [H. U., Bergmeyer, editor]. New York: Academic Press.CrossRefGoogle Scholar
Berry, M. N. & Friend, D. S. (1969). High-yield preparation of isolated rat liver parenchymal cells. Journal of Cellular Biology 43, 506520.CrossRefGoogle ScholarPubMed
Cerda, M., Jord´, A., Barber, T., Castell, J. V., Cabo, J. & Timoneda, J. (1988). An enzyme immunoassay for the quantitation of rat liver carbamoyl-phosphate synthetase I. Analytical Biochemistry 174, 687692.CrossRefGoogle ScholarPubMed
Das, T. K. & Waterlow, J. C. (1974). The rate of adaptation of urea cycle enzymes, aminotransferases and glutamic dehydrogenase to changes in dietary protein intake. British Journal of Nutrition 32, 353373.CrossRefGoogle ScholarPubMed
Drewry, M. M., Harris, R. B. S. & Martin, R. J. (1988). Developmental changes in response to overfeeding: effect on composition of gain, liver metabolism and adipocyte cellularity in rats. Journal of Nutrition 118, 194198.CrossRefGoogle ScholarPubMed
Frings, C. S., Fendley, T. W., Dunn, R. T. & Queen, C. A. (1972). Improved determination of total serum lipids by the sulfo-phosphovanillin reaction. Clinical Chemistry 18, 673674.CrossRefGoogle ScholarPubMed
Garza, C., Scrimshaw, N. S. & Young, V. R. (1976). Human protein requirements: the effect of variations in energy intake within the maintenance range. American Journal of Clinical Nutrition 29, 280287.CrossRefGoogle ScholarPubMed
Grisolia, S., Quijada, C. L. & Fernandez, M. (1964). Glutamate dehydrogenase from yeast and from animal tissues. Biochimica et Biophysica Acta 81, 6170.Google Scholar
Gutmann, I. & Bernt, E. (1974). Pyruvate kinase. In Methods ofEnzymatic Analysis. vol. 2, 2nd ed., pp. 778783 [Bergmeyer, H. U. editor]. New York: Academic Press.Google Scholar
Hers, H. G. & Hue, L. (1983). Gluconeogenesis and related aspects of glycolysis. Annual Review of Biochemistry 52, 617653.CrossRefGoogle ScholarPubMed
Inoue, G., Fujita, Y. & Niiyama, Y. (1973). Studies on protein requirements of young men fed eggprotein and rice protein with excess and maintenance energy intakes. Journal of Nutrition 103, 16731687.CrossRefGoogle Scholar
Kinney, J. M. & Elwyn, D. H. (1983). Protein metabolism and injury. Annual Review of Nutrition 3, 433466.CrossRefGoogle ScholarPubMed
Lieber, C. S. & De Carli, L. M. (1982). The feeding of alcohol in liquid diets: two decades of applications and 1982 update. Alcoholism, Clinical and Experimental Research 6, 523531.CrossRefGoogle ScholarPubMed
Lieber, C. S. & De Carli, L. M. (1986). The feeding of ethanol in liquid diets: 1986 update. Alcoholism, Clinical and Experimental Research 10, 550553.CrossRefGoogle Scholar
McCargar, L. J., Baracos, V. E. & Clandinin, M. T. (1989 a). Influence of dietary carbohydrate-to-fat ratio on whole body nitrogen retention and body composition in adult rats. Journal of Nutrition 119, 12401245.CrossRefGoogle ScholarPubMed
McCargar, L. J., Clandinin, M. T., Belcastro, A. N. & Walker, K. (1989 b). Dietary carbohydrate-to-fat ratio: influence on whole-body nitrogen retention, substrate utilization, and hormone response in healthy male subjects. American Journal of Clinical Nutrition 49, 11691178.CrossRefGoogle ScholarPubMed
McClure, W. R., Lardy, H. A. & Kneifel, H. P. (1971). Rat liver pyruvate carboxylase. I. Preparation, properties and cation specifity. Journal of Biological Chemistry 246, 35693578.CrossRefGoogle Scholar
Meijer, A. J., Lamers, W. H. & Chamuleau, R. A. F. M. (1990). Nitrogen metabolism and ornithine cycle function. Physiologicai Reviews 70, 701748.CrossRefGoogle ScholarPubMed
Minari, O. & Zilversmit, D. B. (1963). Use of KCN for stabilization of color in direct Nesslerization of Kjeldahl digest. Analytical Biochemistry 6, 320327.CrossRefGoogle Scholar
Moore, B. J. (1987). The cafeteria diet - an inappropriate tool for studies of thermogenesis. Journal of Nutrition 117, 227231.CrossRefGoogle ScholarPubMed
Munro, H. N. (1951). Carbohydrate and fat as factors in protein utilization and metabolism. Physiological Reviews 31, 449488.CrossRefGoogle ScholarPubMed
Munro, H. N. (1964). General aspects of the regulation of protein metabolism by diet and by hormones. In Mammalian Protein Metabolism, vol. 1, pp. 381481 [Munro, H. N. and Allison, J. B., editors]. New York: Academic Press.CrossRefGoogle Scholar
Munro, H. N. (1978). Energy and protein intakes as determinants of nitrogen balance. Kidney International 14, 313316.CrossRefGoogle ScholarPubMed
Nägele, U., Hagele, E. O., Ziegenhorn, J. & Wahlefeld, A. W. (1983). Reagent for the enzymatic determination of serum total triglycerides with improved lipolytic efficiency. Clinical Chemistry 29, 10751080.Google Scholar
Naranayan, S. & Appleton, H. D. (1980). Creatinine: a review. Clinical Chemistry 26, 11191126.CrossRefGoogle Scholar
National Research Council (1978). Nutrient requirements of laboratory animals. Nutrient Requirements of Domestic Animals no. 10, 3rd ed. pp. 737. Washington, D.C: National Academy of Sciences.Google Scholar
Nuzum, C. & Snodgrass, P. (1976). Multiple assays of the five urea cycle enzymes in human liver homogenates. In The Urea Cycle, pp. 325355 [Grisolia, S., Baguena, R. and Mayor, F., editors]. New York: John Wiley & Sons.Google Scholar
Opie, L. H. & Newsholme, E. A. (1967). The activities of fructose-l,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white and red muscle. Biochemical Journal 103, 391399.CrossRefGoogle Scholar
Pilkis, S. J., El-Maghrabi, M. R. & Claus, T. H. (1988). Hormonal regulation of hepatic gluconeogenesis and glycolysis. Annual Review of Biochemistry 57, 755783.CrossRefGoogle ScholarPubMed
Ramirez, I. (1987). Feeding a liquid diet increases energy intake, weight gain and body fat in rats. Journal of Nutrition 117, 21272134.CrossRefGoogle ScholarPubMed
Reeds, P. J., Cadenhead, A, Fuller, M. F., Lobley, G. E. & McDonald, J. D. (1980). Protein turnover in growing pigs Effects of age and food intake. British Journal of Nutrition 43, 445455.CrossRefGoogle ScholarPubMed
Reeds, P. J., Fuller, M. F., Cadenhead, A, Lobley, G. E & McDonald, J. D. (1981). Effects of changes in the intakes of protein and non-protein energy on whole-body protein turnover in growing pigs. British Journal of Nutrition 45, 539546.CrossRefGoogle ScholarPubMed
Reeves, P. G. (1989). AIN 76 diet: Should we change the formulation? Journal of Nutrition 119, 10811082.CrossRefGoogle ScholarPubMed
Rothwell, N. J. & Stock, M. J. (1979). A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 3135.CrossRefGoogle ScholarPubMed
Rothwell, N. J. & Stock, M. J. (1981). Regulation of energy balance. Annual Review of Nutrition 1, 235256.CrossRefGoogle ScholarPubMed
Saheki, T., Tsuda, M., Takada, S., Kusumi, K. & Katsunuma, T. (1980). Role of argininosuccinate synthetase in the regulation of urea synthesis in the rat and argininosuccinate-associated metabolic disorder in man. Advances in Enzyme Regulation 18, 221238.CrossRefGoogle ScholarPubMed
Schimke, R. T. (1962). Adaptive characteristics of urea cycle enzymes in the rat. Journal ofBiologica1 Chemistry 237, 459468.CrossRefGoogle ScholarPubMed
Schimke, R. T. (1964). The importance of both synthesis and degradation in the control of arginase levels in rat liver. Journal of Biological Chemistry 239, 38083817.CrossRefGoogle ScholarPubMed
Shimazu, T. & Ogasawara, S. (1975). Effects of hypothalamic stimulation on gluconeogenesis and glycolysis in rat liver. American Journal of Physiology 228, 17871793.CrossRefGoogle ScholarPubMed
Siedel, J., Hagele, E. O., Ziegenhorn, J. & Wahlefeld, A. W. (1983). Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clinical Chemistry 29, 10751080.CrossRefGoogle ScholarPubMed
Warnick, G. R., Cheung, M. C. & Albers, J. J. (1979). Comparison of current methods for high-density lipoprotein cholesterol quantitation. Clinical Chemistry 25, 596604.CrossRefGoogle ScholarPubMed
Waterlow, J. C. (1986). Metabolic adaptation to low intakes of energy and protein. Annual Review of Nutrition 6, 495526.CrossRefGoogle ScholarPubMed