Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T11:18:30.775Z Has data issue: false hasContentIssue false

Hepatic copper–and zinc-binding proteins in ruminants

1. Distribution of Cu and Zn among soluble proteins of livers of varying Cu and Zn content

Published online by Cambridge University Press:  24 July 2007

I Bremner
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
R. B Marshall
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A metal-binding fraction with a molecular weight of about 12000 in calf and sheep liver has been characterized as a metallothionein-like protein.

2. The combined concentrations of copper and zinc in the fraction (as μg/g liver) are a direct function of liver Zn concentration.

3. The relative proportions of Cu and Zn in the fraction are dependent on the Cu: Zn ratio in the liver.

4. These findings may be relevant to the mutual interaction between Cu and Zn.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Andrews, P. (1965). Biochem. J. 96, 595.CrossRefGoogle Scholar
Becker, W. M. & Hoekstra, W. G. (1968). J. Nutr. 94, 455.CrossRefGoogle Scholar
Bremner, I. & Dalgarno, A. C. (1973). Br. J. Nutr. 30, 61.CrossRefGoogle Scholar
Bremner, I., Davies, N. T. & Mills, C. F. (1973). Biochem. Soc. Trans. 1, 982.CrossRefGoogle Scholar
Bremner, I. & Marshall, R. M. (1974). Br. J. Nutr. 32, 293.CrossRefGoogle Scholar
Brinkman, G. L., Miller, R. F. & Engel, R. W. (1961). Proc. Soc. exp. Bid. Med. 107, 666.CrossRefGoogle Scholar
Carrico, R. J. & Deutsch, H. F. (1969). J. biol. Chem. 244, 6087.CrossRefGoogle Scholar
Evans, G. W., Majors, P. F. & Cornatzer, W. E. (1970). Biochem. biophys. Res. Commun. 40, 1142.CrossRefGoogle Scholar
Hill, C. H. & Matrone, G. (1970). Fedn Proc. Fedn Am. Socs exp. Bid. 29, 1474.Google Scholar
Hill, R., Thambyah, R., Wan, S. P. & Shanta, C. S. (1962). J. agric. Sci., Cumb. 59, 409.CrossRefGoogle Scholar
Kägi, J. H. R. (1970). Abstr. 8th Int. Congr. Biochem. p. 130.Google Scholar
Kägi, J. H. R. & Vallee, B. L. (1960). J. biol. Chem. 235, 3460.CrossRefGoogle Scholar
Kägi, J. H. R. & Vallee, B. L. (1961). J. biol. Chem. 236, 2435.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
McCord, J. M. & Fridovich, I. (1969). J. biol. Chm. 244, 6049.CrossRefGoogle Scholar
Mann, T. & Keilin, D. (1939). Proc. R. Soc. B 126, 303.Google Scholar
Mills, C. F. (1974). Proc. 2nd int. Symp. on Trace Element Metabolism in Animals, Madison, Wisconsin.Google Scholar
Mills, C. F., Dalgarno, A. C., Williams, R. B. & Quarterman, J. (1967). Br. J. Nutr. 21, 751.CrossRefGoogle Scholar
Ott, E. A., Smith, W. H., Stob, M., Parker, H. E., Harrington, R. B. & Beeson, W. M. (1965). J. Nzrtr. 87, 459.Google Scholar
Poole, D. B. R. (1970). In Truce Element Metabolism in Animals p. 465 [Mills, C. F., editor]. Edinburgh: E. & S. Livingstone.Google Scholar
Porter, H. (1964). Archs Neural., Chicago 11, 341.CrossRefGoogle Scholar
Shapiro, J., Morell, A. G. & Scheinberg, I. H. (1961). J. clin. Invest. 40, 1081.Google Scholar
Suttle, N. F. & Mills, C. F. (1966). Br. J. Nutr. 20, 135.CrossRefGoogle Scholar
Webb, M. (1972). Biochem. Pharmac. 21, 2751.CrossRefGoogle Scholar
Winge, D. R. & Rajagopalan, K. V. (1972). Archs Biochem. Biophys. 153, 755.CrossRefGoogle Scholar