Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T02:32:01.405Z Has data issue: false hasContentIssue false

Good COP, bad COP: an unsolved murder. Are dietary cholesterol oxidation products guilty of atherogenicity?

Published online by Cambridge University Press:  09 March 2007

Keri L. H. Carpenter
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Invited commentary
Copyright
Copyright © The Nutrition Society 2002

References

Ando, M, Tomoyori, H & Imaizumi, K (2002) Dietary cholesterol oxidation products accumulate in serum and liver in apolipoprotein E-deficient mice, but do not accelerate atherosclerosis. British Journal of Nutrition 88, 339345.CrossRefGoogle Scholar
Babiker, A, Andersson, O, Lindblom, D, van der Linden, J, Wiklund, B, Lutjohann, D, Diczfalusy, U & Björkhem, I (1999) Elimination of cholesterol as cholestenoic acid in human lung by sterol 27-hydroxylase: evidence that most of this steroid in the circulation is of pulmonary origin. Journal of Lipid Research 40, 14171425.CrossRefGoogle Scholar
Babiker, A & Diczfalusy, U (1998) Transport of side-chain oxidized oxysterols in the human circulation. Biochimica et Biophysica Acta 1392, 333339.CrossRefGoogle ScholarPubMed
Björkhem, I & Diczfalusy, U (2002) Oxysterols: friends, foes, or just fellow passengers? Arteriosclerosis, Thrombosis, and Vascular Biology 22, 734742.CrossRefGoogle ScholarPubMed
Breslow, JL (1996) Mouse models of atherosclerosis. Science 272, 685688.CrossRefGoogle ScholarPubMed
Breuer, O & Björkhem, I (1995) Use of an 18O2 inhalation technique and mass isotopomer distribution analysis to study oxygenation of cholesterol in rat. Evidence for in vivo formation of 7-oxo-, 7 beta-hydroxy-, 24-hydroxy-, and 25-hydroxycholesterol. Journal of Biological Chemistry 270, 2027820284.CrossRefGoogle ScholarPubMed
Brown, AJ & Jessup, W (1999) Oxysterols and atherosclerosis. Atherosclerosis 142, 128.CrossRefGoogle ScholarPubMed
Brown, AJ, Watts, GF, Burnett, JR, Dean, RT & Jessup, W (2000) Sterol 27-hydroxylase acts on 7-ketocholesterol in human atherosclerotic lesions and macrophages in culture. Journal of Biological Chemistry 275, 2762727633.CrossRefGoogle ScholarPubMed
Carpenter, KLH, Taylor, SE, van der Veen, C, Williamson, BK, Ballantine, JA & Mitchinson, MJ (1995) Lipids and oxidised lipids in human atherosclerotic lesions at different stages of development. Biochimica et Biophysica Acta 1256, 141150.CrossRefGoogle ScholarPubMed
Carpenter, KLH, Wilkins, GM, Fussell, B, Ballantine, JA, Taylor, SE, Mitchinson, MJ & Leake, DS (1994) Production of oxidized lipids during modification of low-density lipoprotein by macrophages or copper. Biochemical Journal 304, 625633.CrossRefGoogle ScholarPubMed
Clare, K, Hardwick, SJ, Carpenter, KLH, Weeratunge, N & Mitchinson, MJ (1995) Toxicity of oxysterols to human monocyte-macrophages. Atherosclerosis 118, 6775.CrossRefGoogle ScholarPubMed
Crisby, M, Nilsson, J, Kostulas, V, Björkhem, I & Diczfalusy, U (1997) Localization of sterol 27-hydroxylase immuno-reactivity in human atherosclerotic plaques. Biochimica et Biophysica Acta 1344, 278285.CrossRefGoogle ScholarPubMed
Garcia-Cruset, S, Carpenter, KLH, Codony, R & Guardiola, F (2002) Cholesterol oxidation products and atherosclerosis. In Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence and Biological Effects, chapter 13, [Guardiola, F, Dutta, PC, Codony, R and Savage, GP, editors]. Champaign, IL: AOCS Press pp. 241277Google Scholar
Garcia-Cruset, S, Carpenter, KLH, Guardiola, F & Mitchinson, MJ (1999) Oxysterols in cap and core of human advanced atherosclerotic lesions. Free Radical Research 30, 341350.CrossRefGoogle ScholarPubMed
Garcia-Cruset, S, Carpenter, KLH, Guardiola, F, Stein, BK & Mitchinson, MJ (2001) Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Free Radical Research 35, 3141.CrossRefGoogle ScholarPubMed
Hayek, T, Oiknine, J, Brook, JG & Aviram, M (1994) Increased plasma and lipoprotein lipid peroxidation in apo E-deficient mice. Biochemical and Biophysical Research Communications 201, 15671574.CrossRefGoogle ScholarPubMed
Imai, H, Werthessen, NT, Taylor, CB & Lee, KT (1976) Angiotoxicity and arteriosclerosis due to contaminants of USP-grade cholesterol. Archives of Pathology and Laboratory Medicine 100, 565572.Google ScholarPubMed
Jacobson, MS (1987) Cholesterol oxides in Indian ghee: possible cause of unexplained high risk of atherosclerosis in Indian immigrant populations. Lancet 2, 656658.CrossRefGoogle ScholarPubMed
Lund, EG, Kerr, TA, Sakai, J, Li, WP & Russell, DW (1998) cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. Journal of Biological Chemistry 273, 3431634327.CrossRefGoogle ScholarPubMed
Moghadasian, MH, McManus, BM, Nguyen, LB, Shefer, S, Nadji, M, Godin, DV, Green, TJ, Hill, J, Yang, Y, Scudamore, CH & Frohlich, JJ (2001) Pathophysiology of apolipoprotein E deficiency in mice: relevance to apo E-related disorders in humans. FASEB Journal 15, 26232630.CrossRefGoogle ScholarPubMed
Mol, MJ, de Rijke, YB, Demacker, PN & Stalenhoef, AF (1997) Plasma levels of lipid and cholesterol oxidation products and cytokines in diabetes mellitus and cigarette smoking: effects of vitamin E treatment. Atherosclerosis 129, 169176.CrossRefGoogle ScholarPubMed
Porkkala-Sarataho, E, Salonen, JT, Nyyssonen, K, Kaikkonen, J, Salonen, R, Ristonmaa, U, Diczfalusy, U, Brigelius-Flohe, R, Loft, S & Poulsen, HE (2000) Long-term effects of vitamin E, vitamin C, and combined supplementation on urinary 7-hydro-8-oxo-2'-deoxyguanosine, serum cholesterol oxidation products, and oxidation resistance of lipids in nondepleted men. Arteriosclerosis, Thrombosis, and Vascular Biology 20, 20872093.CrossRefGoogle ScholarPubMed
Pratico, D (2001) Lipid peroxidation in mouse models of atherosclerosis. Trends in Cardiovascular Medicine 11, 112116.CrossRefGoogle ScholarPubMed
Pratico, D, Tangirala, RK, Rader, DJ, Rokach, J & FitzGerald, GA (1998) Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nature Medicine 4, 11891192.CrossRefGoogle ScholarPubMed
Rosenblat, M & Aviram, M (2002) Oxysterol-induced activation of macrophage NADPH-oxidase enhances cell-mediated oxidation of LDL in the atherosclerotic apolipoprotein E deficient mouse: inhibitory role for vitamin E. Atherosclerosis 160, 6980.CrossRefGoogle ScholarPubMed
Salonen, JT, Nyyssonen, K, Salonen, R, Porkkala-Sarataho, E, Tuomainen, TP, Diczfalusy, U & Björkhem, I (1997) Lipoprotein oxidation and progression of carotid atherosclerosis. Circulation 95, 840845.CrossRefGoogle ScholarPubMed
Schroepfer, GJ Jr (2000) Oxysterols: modulators of cholesterol metabolism and other processes. Physiological Reviews 80, 361554.CrossRefGoogle ScholarPubMed
Shanahan, CM, Carpenter, KLH & Cary, NRB (2001) A potential role for sterol 27-hydroxylase in atherogenesis. Atherosclerosis 154, 269276.CrossRefGoogle ScholarPubMed
Staprans, I, Pan, XM, Rapp, JH, Grunfeld, C & Feingold, KR (2000) Oxidized cholesterol in the diet accelerates the development of atherosclerosis in LDL receptor- and apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 20, 708714.CrossRefGoogle ScholarPubMed
Thomas, SR, Leichtweis, SB, Pettersson, K, Croft, KD, Mori, TA, Brown, AJ & Stocker, R (2001) Dietary cosupplementation with vitamin E and coenzyme Q(10) inhibits atherosclerosis in apolipoprotein E gene knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology 21, 585593.CrossRefGoogle ScholarPubMed
Van Eck, M, Herijgers, N, Van Dijk, KW, Havekes, LM, Hofker, MH, Groot, PH & Van Berkel, TJ (2000) Effect of macrophage-derived mouse ApoE, human ApoE3-Leiden, and human ApoE2 (Arg158→Cys) on cholesterol levels and atherosclerosis in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 20, 119127.CrossRefGoogle Scholar