Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T18:04:20.271Z Has data issue: false hasContentIssue false

Glycosyl ureides in ruminant nutrition

3. In vivo studies on the metabolism of glycosyl ureides and corresponding mixtures of their free component molecules

Published online by Cambridge University Press:  09 March 2007

R. J. Merry
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
R. H. Smith
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
A. B. McAllan
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Steers and sheep were given basal diets of barley and straw (1:1. w/w), usually containing urea, which for certain experimental periods were supplemented with pure glucosyl urea (GU), pure lactosyl urea (LU) or a product prepared from whey concentrate (EW) which contained 65–80% of the lactose in the form of LU.

2. On the morning of an experiment ureide (or EW) was omitted from the feed and a dose of either ureide (or EW) or equivalent amounts of free lactose and urea (L+U) was added to the rumen within 30 min of feeding, together in some experiments with polyethylene glycol (PEG) as a fluid-phase marker. Samples of rumen contents, and in some experiments abomasai contents, were taken at intervals for up to 8 h.

3. For both steers and sheep given GU and LU for the first time (unadapted animals) there was little or no accumulation of ammonia in the rumen or cleavage of the sugar-urea bond. Galactose was. however, slowly liberated from LU.

4. For steers and sheep which had been given GU, LU or EW for approximately 7–10 d or more (adapted animals) some accumulation of ammonia occurred after adding GU or LU to the rumen, but for LU it occurred less rapidly and to a lower peak concentration than when L + U was added. In adapted animals cleavage of the sugar-urea bond in LU was virtually complete in 2–4 h. Degradation of the components of L + U was virtually complete within 1 h.

5. Recovery at the abomasum of ureide (present either as GU or LU) estimated from ureide: PEG values, appeared to be complete in experiments with unadapted sheep given a dose of EW. In adapted sheep only very small amounts of ureide in an EW dose (on average 6%) entered the abomasum undegraded. Amounts lost in this way appeared to be positively correlated with the rate of fluid turnover in the rumen.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Al Attar, A., Evans, R. A. & Axford, R. F. E. (1976). Proc. Nutr. Soc. 35, 108A.Google Scholar
Barej, W. & Harmeyer, J. (1979). Q.J. exp. Physiol. 64, 31.CrossRefGoogle Scholar
Bartley, E. E. & Deyoe, C. W. (1977). In Recent Advances in Animal Nutrition, p. 50 [Haresign, W. and Lewis, D., editors]. London: Butterworths.Google Scholar
Borgida, L. P., Durand, M. & Delort-Laval, J. (1976). Annls Zootech. 25, 71.CrossRefGoogle Scholar
Borhami, B. E., El-Shazly, K., Nour, A. M., Zaki-el-Din, M., Abaza, M. A. & Hassouna, M. S. (1981). Z. Tierphysiol. Tierernähr. Futtermittelk 45, 205.CrossRefGoogle Scholar
Buttery, P. J. (1977). In Recent Advances in Animal Nutrition, p. 8 [Haresign, W. and Lewis, D., editors]. London: Butterworths.Google Scholar
Chalupa, W., Clark, J., Opliger, P. & Lavker, R. (1970). J. Nutr. 100, 170.CrossRefGoogle Scholar
Durand, M., Dumay, C., Beaumartin, P. H. & Kumaresan, A. (1976). In Tracer Studies on Non-protein Nitrogen for Ruminants, vol. 3, p. 27. Vienna: International Atomic Energy Agency.Google Scholar
Fonnesbeck, P. V., Kearl, L. C. & Harris, L. E. (1975). J. Anim. Sci. 40, 1150.CrossRefGoogle Scholar
Gilchrist, F. M. C., Potgieter, E. & Voss, J. B. N. (1968). J. agric. Sci., Camb. 70, 157.CrossRefGoogle Scholar
Harrison, D. G. & McAllan, A. B. (1980). In Digestive Physiology and Metabolism in Ruminants, p. 205 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Juhász, B. & Szegedi, B. (1980). Arch. Tierernähr. 30, 173.CrossRefGoogle Scholar
Kaufmann, W. & Hagemeister, H. (1973). Milchwissenschaft 28, 347.Google Scholar
Lewis, D. & Buttery, P. J. (1973). In Production Disease in Farm Animals, p. 201 [Payne, J. M., Hibbitt, K. G. and Sansom, B. F., editors]. London: Ballière Tindall.Google Scholar
Maeng, W. J. & Baldwin, R. L. (1976). J. Diary Sci. 59, 648.CrossRefGoogle Scholar
Meggison, P. A., McMeniman, N. P. & Armstrong, D. G. (1979). Proc. Nutr. Soc. 38, 147A.Google Scholar
Mehrez, A. Z., Ørskov, E. R. & McDonald, I. W. (1977). Br. J. Nutr. 38, 437.CrossRefGoogle Scholar
Merry, R. J. (1980). The use of dietary non-protein nitrogen compounds by the ruminant with particular emphasis on the glycosyl ureides. PhD thesis, University of Reading.Google Scholar
Merry, R. J., Smith, R. H. & McAllan, A. B. (1979). Ann. Rech. Vét. 10, 314.Google Scholar
Merry, R. J., Smith, R. H. & McAllan, A. B. (1981). Proc. Nutr. Soc. 40, 14A.Google Scholar
Merry, R. J., Smith, R. H. & McAllan, A. B. (1982 a). Br. J. Nutr. 48, 275.CrossRefGoogle Scholar
Merry, R. J., Smith, R. H. & McAllan, A. B. (1982 b). Br. J. Nutr. 48, 287.CrossRefGoogle Scholar
Milligan, L. P., Worsley, M., Elofson, M., Young, B. A. & Atwal, A. S. (1972). J. Anim. Sci. 34, 89A.Google Scholar
National Academy of Sciences (1976). Urea and Other Non-protein Nigrogen Compounds in Animal Nutrition. Washington, DC: National Research Council.Google Scholar
Oldham, J. D., Buttery, P. J., Swan, H. & Lewis, D. (1977). J. agric. Sci., Camb. 89, 467.CrossRefGoogle Scholar
Satter, L. D. & Roffler, R. E. (1975). J. Dairy Sci. 58, 1219.CrossRefGoogle Scholar
Schröder, H. H. E. & Gilchrist, F. M. C. (1969). J. agric. Sci., Camb. 72, 1.CrossRefGoogle Scholar
Smith, R. H. (1959). J. agric. Sci., Camb. 52, 72.CrossRefGoogle Scholar
Smith, R. H. (1979). J. Anim. Sci. 46, 1604.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1970). Br. J. Nutr. 24, 545.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1971). In Automation in Analytical Chemistry: Technicon International Symposium, Basingstoke, Hants: Technicon Instruments Co. Ltd.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1972). Statistical Methods, 6th ed. pp. 9197. Ames, Iowa: Iowa State University Press.Google Scholar
Tiwari, A. D., Owens, F. N. & Garrigus, U. S. (1973). J. Anim. Sci. 37, 1396.CrossRefGoogle Scholar
Widell, S. (1979). Proc. Whey Products Conf. Minneapolis, 1978, p. 53. Whey Products Institute and USDA.Google Scholar
Williams, A. P. & Smith, R. H. (1974). Br. J. Nutr. 32, 421.CrossRefGoogle Scholar
Wyatt, R. D., Johnson, R. R. & Clemens, E. T. (1975). J. Anim. Sci. 40, 126.CrossRefGoogle Scholar