Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T04:24:05.039Z Has data issue: false hasContentIssue false

Fractional catabolic rates of myosin and actin estimated by urinary excretion of NT-methylhistidine: the effect of dietary protein level on catabolic rates under conditions of restricted food intake

Published online by Cambridge University Press:  13 December 2007

N. Nishizawa
Affiliation:
Department of Agricultural Chemistry, Iwate University, Morioka, Iwate, Japan
M. Shimbo
Affiliation:
Department of Agricultural Chemistry, Iwate University, Morioka, Iwate, Japan
S. Hareyama
Affiliation:
Department of Agricultural Chemistry, Iwate University, Morioka, Iwate, Japan
R. Funabiki
Affiliation:
Department of Agricultural Chemistry, Tokyo Noko University, Fuchu-shi, Tokyo, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Critical studies on the distribution of NT-methylhistidine (3-methylhistidine; Me-His) among organs and tissues in adult rats are reported. Adult rats contained 46.5 ± 3.6 mg Me-His/kg body-weight. Almost 90% of the Me-His in the body was recovered from skeletal muscle. These results support the hypothesis that fractional catabolic rates of myosin and actin in skeletal muscle can be estimated by measuring urinary excretion of Me-His.

2. Dietary protein level did not affect the total amount of Me-His in the body. However, urinary excretion of Me-His increased as dietary protein intake was increased.

3. From these results it was concluded that fractional catabolic rates of myosin and actin increase as dietary protein intake increases.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

REFERENCES

Asatoor, A. M. & Armstrong, M. D. (1967). Biochem. biophys. Res. Commun. 26, 168.CrossRefGoogle Scholar
Association of Official Analytical Chemists (1975). Official Methods of Analysis, 12th ed.Washington, D.C.: Association of Official Analytical Chemists.Google Scholar
Funabiki, R. & Cassens, R. G. (1972). Nature New Biol. 236, 249.CrossRefGoogle Scholar
Funabiki, R. & Kandatsu, M. (1968).J. Biochem., Tokyo 64, 717.Google Scholar
Garlick, P. J., Millward, D. J., James, W. P. T. & Waterlow, J. C. (1975). Biochim. biophys. Acta 414, 71.CrossRefGoogle Scholar
Goldberg, A. L. (1969). J. biol. Chem. 244, 3223.CrossRefGoogle Scholar
Grafnetter, D., Janošová, Z. & Červinková, I. (1967). Clinica chim. Acta 17, 493.Google Scholar
Harper, A. E. (1959). J. Nutr. 68, 405.Google Scholar
Haverberg, L. N., Omstedt, P. T., Munro, H. N. & Young, V. R. (1975). Biochim. biophys. Acta 405, 67.Google Scholar
Hegsted, D. M. (1975). In Protein-Calorie Malnutrition, p. 37 [Olson, R. E. editor]. New York and London: Academic Press.CrossRefGoogle Scholar
Long, C. L., Haverberg, L. N., Young, V. R., Kinney, J. M., Munro, H. N. & Geiger, J. M. (1975). Metabolism 24, 929.CrossRefGoogle ScholarPubMed
Miller, S. A. (1969). In Mammalian Protein Metabolism, Vol. 3, ch. 26 [Munro, H. N. editor]. New York and London: Academic Press.Google Scholar
Millward, D. J. (1970 a). Clin. Sci. 39, 577.CrossRefGoogle Scholar
Millward, D. J. (1970 b). Clin. Sci. 39, 591.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., James, W. P. T., Nnanyelugo, D. O. & Ryatt, J. S. (1973). Nature, Lond. 241, 204.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C. (1975). Biochem. J. 150, 235.CrossRefGoogle Scholar
Munro, H. N. (1969). In Mammalian Protein Metabolism, Vol. 3, ch. 25 [Munro, H. N. editor]. New York and London: Academic Press.Google Scholar
Nishizawa, N., Funabiki, R. & Hareyama, S. (1975). J. Nutr. Sci. Vitam., Tokyo 21, 383.Google Scholar
Rabinowitz, M. (1973). Am. J. Cardiol. 31, 202.Google Scholar
Shibko, S., Koivistoinen, P., Tratnyek, C. A., Newhall, A. R. & Friedman, L. (1967). Analyt. Biochem. 19, 514.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed., ch. 10. Ames, Iowa: Iowa State University Press.Google Scholar
Swick, R. W. & Song, H. (1974). J. Anim. Sci. 38, 1150.Google Scholar
Wannemacher, R. W. Jr, Dinterman, R. E., Pekarek, R. S., Bartelloni, P. J. & Beisel, W. R. (1975). Am. J. clin. Nutr. 28, 110.Google Scholar
Waterlow, J. C. (1975). In Protein-Calorie Malnutrition, p. 23 [Olson, R. E. editor]. New York and London: Academic Press.Google Scholar
Waterlow, J. C. & Stephen, J. M. L. (1968). Clin. Sci. 35, 287.Google Scholar
Yamaguchi, M. & Kandatsu, M. (1967). Agric. biol. Chem. J. 31, 776.Google Scholar
Yamaguchi, M. & Kandatsu, M. (1973). Agric. biol. Chem. J. 37, 579.Google Scholar
Young, V. R. (1970). In Mammalian Protein Metabolism, Vol. 4, ch. 40 [Munro, H. N. editor]. New York and London: Academic Press.Google Scholar
Young, V. R., Alexis, S. D., Baliga, B. S., Munro, H. N. & Muecke, W. (1972). J. biol. Chem. 247, 3592.CrossRefGoogle Scholar
Young, V. R., Haverberg, L. N., Bilmazes, C. & Munro, H. N. (1973). Metabolism 22, 1429.Google Scholar
Young, V. R., Stothers, S. C. & Vilaire, G. (1971). J. Nutr. 101, 1379.Google Scholar