Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:08:08.088Z Has data issue: false hasContentIssue false

Fate of fructo-oligosaccharides in the human intestine

Published online by Cambridge University Press:  09 March 2007

Martine S. Alles
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, The Netherlands
Joseph G. A. J. Hautvast
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, The Netherlands
Fokko M. Nagengast
Affiliation:
Department of Gastroenterology and Hepatology, University Hospital St Radboud, Nijmegen, The Netherlands
Ralf Hartemink
Affiliation:
Department of Food Science, Wageningen Agricultural University, The Netherlands
Katrien M. J. Van Laere
Affiliation:
Department of Food Science, Wageningen Agricultural University, The Netherlands
Jan B. M. J. Jansen
Affiliation:
Department of Gastroenterology and Hepatology, University Hospital St Radboud, Nijmegen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is a need for studies on colonic fermentation in order to learn more abouthealth and diseases of the colon. The aim of the present study was to evaluate the fate of twodifferent doses of fructo-oligosaccharides (5 and 15 g/d) v. glucose in the intestine of healthy men. Twenty-four volunteers participated in a 5-weekstudy. The study was a completely balanced multiple crossover trial using an orthogonal Latin-square design for three periods, with supplement periods of 7 d and two 7 d wash-out periods. Breath samples and faecal samples were collected. There was a clear gaseous response to the consumption of fructo-oligosaccharides. The highest dose significantly increased 24 h integratedexcretion of breath H2 (P < 0·05). Breath H2 excretion after ingestion of 5 g fructo-oligosaccharides was higher than control, but did not reach significance. No effects on the total concentration of short-chain fatty acids in faeces were observed, no modification of the molar proportions of the various short-chain fatty acids was observed. The faecal pH did not change. No changes in faecal weight were observed. No fructo-oligosaccharides were recovered in faeces. We conclude that fructo-oligosaccharides added to the diet of young Western subjects are fully metabolized in the large intestine. The level of fermentation seems to be dose-dependent.

Type
Human and Clinical Nutrition
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Cummings, J. H., Bingham, S. A., Heaton, K. W. & Eastwood, M. A. (1992). Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fibre). Gastroenterology 103, 17831789.CrossRefGoogle Scholar
Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E. & Macfarlane, G. T. (1987). Short-chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 12211227.CrossRefGoogle ScholarPubMed
Gibson, G. R., Beatty, E. R., Wang, Z. & Cummings, J. H. (1995). Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.CrossRefGoogle ScholarPubMed
Hayakawa, K., Mizutani, J., Wada, K., Masai, T., Yoshihara, I. & Mitsuoka, T. (1990). Effects of soybean oligosaccharides on human faecal flora. Microbial Ecology in Health and Disease 3, 293303.CrossRefGoogle Scholar
Heaton, K. W., Radvan, J., Cripps, H., Mountford, R. A., Braddon, F. E. M. & Hughes, A. O. (1992). Defecation frequency and timing, and stool form in the general population: a prospective study. Gut 33, 818824.CrossRefGoogle ScholarPubMed
Hidaka, H., Eida, T., Takizawa, T., Tokunaga, T. & Tashiro, Y. (1986). Effects of fructooligosaccharides on intestinal flora and human health. Bifidobacteria Microflora 5, 3750.CrossRefGoogle Scholar
Höverstad, T., Böhmer, T. & Fausa, O. (1982). Absorption of short chain fatty acids from the human colon measured by the 14CO2 breath test. Scandinavian Journal of Gastroenterology 17, 373378.CrossRefGoogle ScholarPubMed
Ito, M., Deguchi, Y., Miyamori, A., Matsumoto, K., Kikuchi, H., Kobayashi, Y., Tajema, Y. & Kan, T. (1990). Effects of administration of galactooligosaccharides on the human faecal microflora, stool weight and abdominal sensation. Microbial Ecology in Health and Disease 3, 285292.Google Scholar
Koo, M. & Rao, A. V. (1991). Long-term effect of Bifidobacteria and Neosugar on precursor lesions of colonic cancer in CFl mice. Nutrition and Cancer 16, 249257.CrossRefGoogle Scholar
Leclercq, C., Avalle, V., Ranaldi, L., Toti, E. & Ferro-Luzzi, A. (1990). Simplifying the lithium-marker technique used to assess the dietary intake of discretionary sodium in population studies. Clinical Science 79, 227231.CrossRefGoogle ScholarPubMed
McBurney, M. I. (1991). Starch malabsorption and stool excretion are influenced by the menstrual cycle in women consuming low-fibre western diets. Scandinavian Journal of Gastroenterology 26, 880886.CrossRefGoogle ScholarPubMed
Macfarlane, G. T., Gibson, G. R. & Cummings, J. H. (1992) Comparison of fermentation reactions in different regions of the human colon. Journal of Applied Bacteriology 72, 5764.Google Scholar
Masai, T., Wada, K., Hayakawa, K., Yoshihara, I. & Mitsuoka, T. (1987). Effects of soybean oligosaccharides on human intestinal flora and metabolic activities. Japanese Journal of Bacteriology 42, 313325.Google Scholar
Ministerie, van Welzijn, Volksgezondheid en, Cultuur & Ministerie, van Landbouw en Visserij (1988). Wat eet Nederland: resultaten van de voedselconsumptiepeiling 1987–1988. Rijswijk: Centrale Directie Voorlichting, Documentatie en Bibliotheek.Google Scholar
Mitsuoka, T. (1990). Bifidobacteria and their role in human health. Journal of Industrial Microbiology 6, 263268.CrossRefGoogle Scholar
Mitsuoka, T., Hidaka, H. & Eida, T. (1987). Effect of fructo-oligosaccharides on intestinal microflora. Die Nahrung 31, 421436.CrossRefGoogle ScholarPubMed
Modler, H. W., McKellar, R. C. & Yaguchi, M. (1990). Bifidobacteria and bifidogenic factors. Canadian Institute of Food Science and Technology 23, 2941.CrossRefGoogle Scholar
Nagengast, F. M., van Erp, J., Koopman, J. & van Tongeren, J. (1988). The relationship between methane (CH4) production in vitro and excretion in breath. Gastroenterology 94, A319.Google Scholar
Nilsson, U. & Björck, I. (1988). Availability of cereal fructans and inulin in the rat intestinal tract. Journal of Nutrition 118, 14821486.CrossRefGoogle ScholarPubMed
Oku, T., Tokunaga, T. & Hosoya, N. (1984). Nondigestibility of a new sweetener, ‘Neosugar’, in the rat. Journal of Nutrition 114, 15741581.CrossRefGoogle ScholarPubMed
Rumessen, J. J. (1992). Hydrogen and methane breath tests for evaluation of resistant carbohydrates. European Journal of Clinical Nutrition 46, S77S90.Google ScholarPubMed
Rumessen, J. J., Bodé, S., Hamberg, O. & Gudmand-Hoyer, E. (1990 a). Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects. American Journal of Clinical Nutrition 52, 675681.CrossRefGoogle ScholarPubMed
Rumessen, J. J., Hamberg, O. & Gudmand-Hoyer, E. (1990 b). Interval sampling of end-expiratory hydrogen concentrations to quantify carbohydrate malabsorption. Gut 31, 3742.Google Scholar
Sanchez-Castillo, C. P., Seidell, J. & James, W. P. T. (1987). The potential use of lithium as a marker for the assessment of the sources of dietary salt: cooking studies and physiological experiments in men. Clinical Science 72, 8186.CrossRefGoogle ScholarPubMed
Spiegel, J. E., Rose, R., Karabell, P., Frankos, V. H. & Schmitt, D. F. (1994). Safety and benefits of fructooligosaccharides as food ingredients. Food Technology 01, 8589.Google Scholar
Stephen, A. M. & Cummings, J. H. (1980). The microbial contribution to human faecal mass. Journal of Medical Microbiology 1345, 4556.CrossRefGoogle Scholar
Stichting Nederlands Voedingsstoffenbestand (NEVO) (1986). NEVO Table (in Dutch), The Hague: The Netherlands Bureau for Food and Nutrition EducationGoogle Scholar
Stone-Dorshow, T. & Levitt, M. D. (1987). Gaseous response to ingestion of a poorly absorbed fructo-oligosaccharide sweetener. American Journal of Clinical Nutrition 46, 6165.CrossRefGoogle ScholarPubMed
Tokunaga, T., Oku, T. & Hosoya, N. (1989). Utilization and excretion of a new sweetener, fructooligosaccharide (neosugar), in rats. Journal of Nutrition 119, 553559.CrossRefGoogle ScholarPubMed
van Houwelingen, R., Nordoy, A., van der Beek, E., Houtsmuller, U., de Metz, M. & Hornstra, G. (1987). Effect of a moderate fish intake on blood pressure, bleeding time, hematology, and clinical chemistry in healthy males. American Journal of Clinical Nutrition 46, 424436.CrossRefGoogle Scholar
van Munster, I. P., Tangerman, A. & Nagengast, F. M. (1994). Effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Digestive Diseases and Sciences 39, 834842.CrossRefGoogle ScholarPubMed
Wang, X. & Gibson, G. R. (1993). Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Bacteriology 75, 373380.CrossRefGoogle ScholarPubMed
Wolever, T. M. S. & Jenkins, D. J. A. (1986). The use of the glycemic index in predicting the blood glucose response to mixed meals. American Journal of Clinical Nutrition 43, 167172.CrossRefGoogle ScholarPubMed