Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T01:27:11.527Z Has data issue: false hasContentIssue false

Fasting plasma triacylglycerol concentrations predict adverse changes in lipoprotein metabolism after a normal meal

Published online by Cambridge University Press:  09 March 2007

Jennifer L. Potts
Affiliation:
Oxford Lipid Metabolism Group, Sheikh Rashid Laboratory, Radclifle Infirmary, Oxford OX2 6HE
Sandy M. Humphreys
Affiliation:
Oxford Lipid Metabolism Group, Sheikh Rashid Laboratory, Radclifle Infirmary, Oxford OX2 6HE
Simon W. Coppack
Affiliation:
Oxford Lipid Metabolism Group, Sheikh Rashid Laboratory, Radclifle Infirmary, Oxford OX2 6HE
Rachel M. Fisher
Affiliation:
Oxford Lipid Metabolism Group, Sheikh Rashid Laboratory, Radclifle Infirmary, Oxford OX2 6HE
Geoffrey F. Gibbons
Affiliation:
Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, Radclifle Infirmary, Oxford OX2 6HE
Keith N. Fray
Affiliation:
Oxford Lipid Metabolism Group, Sheikh Rashid Laboratory, Radclifle Infirmary, Oxford OX2 6HE
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The changes in lipoprotein metabolism which follow the ingestion of a large fat load have been well described. The hypothesis was tested that similar changes in lipoprotein metabolism would occur after a relatively normal meal. Plasma and lipoprotein triacylglycerol, cholesterol and apolipoprotein concentrations were determined in twenty subjects (ten female) given a mixed meal containing approximately one-third of the daily intake of major nutrients in the typical Western diet. Fasting plasma triacylglycerol concentrations (range 0.38–2.70 mm/l) and the postprandial rise in plasma triacylglycerol varied considerably between subjects and were significantly associated (P < 0.01). The rise in plasma triacylglycerol corresponded to marked increases in the triacylglycerol concentration of the triacylglycerol-rich lipoproteins (TRL; chylomicrons and very-low-density lipoproteins). TRL cholesterol also increased after the meal. An increase in high-density-lipoprotein (HDL)-triacylglycerol following the meal was accompanied by a decrease in HDL-cholesterol concentration, presumably due to the action of the cholesteryl-ester transfer protein. The increases in HDL-triacylglycerol and in TRL- cholesterol were correlated with the postprandial rise in triacylglycerol in the TRL (P < 0.01). We conclude that potentially adverse changes occur in both triacylglycerol-rich and high-density lipoproteins following a typical mixed meal, as they do after large fat loads. The changes are exaggerated in those subjects with greater fasting plasma triacylglycerol concentrations.

Type
Effects of meals on plasma lipids
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Akanji, A., Nzegwu, A. & Agbedana, E. (1992). Some determinants of postprandial lipaemia in Nigerian diabetic and non-diabetic subjects. British Journal of Nutrition 68, 153162.CrossRefGoogle ScholarPubMed
Chen, Y.-D. I. & Reaven, G. M. (1991). Intestinally-derived lipoproteins: metabolism and clinical significance. Diabetes Metabolism Reviews 7, 191208.CrossRefGoogle ScholarPubMed
Cohn, J. S., McNamara, J. R., Cohn, S. D., Ordovas, J. M. & Schaefer, E. J. (1988). Postprandial plasma lipoprotein changes in human subjects of different ages. Journal of Lipid Research 29, 469479.CrossRefGoogle ScholarPubMed
Cohn, J. S., McNamara, J. R., Krasinski, S. D., Russell, R. M. & Schaefer, E. J. (1989). Role of triglyceride-rich lipoproteins from the liver and intestine in the etiology of postprandial peaks in plasma triglyceride concentration. Metabolism 38, 484490.CrossRefGoogle ScholarPubMed
Coppack, S. W., Evans, R. D., Fisher, R. M., Frayn, K. N., Gibbons, G. F., Humphreys, S. M., Kirk, M. J., Potts, J. L. & Hockaday, T. D. R. (1992). Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal. Metabolism 41, 264272.CrossRefGoogle ScholarPubMed
Coppack, S. W., Fisher, R. M., Gibbons, G. F., Humphreys, S. M., McDonough, M. J., Potts, J. L. & Frayn, K. N. (1990). Postprandial substrate deposition in human forearm and adipose tissues in vivo. Clinical Science 79, 339348.CrossRefGoogle ScholarPubMed
Elovson, J., Chatterton, J. E., Bell, G. T., Schumaker, V. N., Reuben, M. A., Puppione, D. L., Reeve, J. R. Jr. & Young, N. L. (1988). Plasma very low density lipoproteins contain a single molecule of apolipoprotein B. Journal of Lipid Research 29, 14611473.CrossRefGoogle ScholarPubMed
Groot, P. H. E. & Scheek, L. M. (1984). Effects of fat ingestion on high density lipoprotein profiles in human sera. Journal of Lipid Research 25, 684692.CrossRefGoogle ScholarPubMed
Havel, R. J., Eder, H. A. & Bragdon, J. H. (1955). The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. Journal of Clinical Investigation 34, 13451353.CrossRefGoogle ScholarPubMed
Havel, R. J., Kane, J. P. & Kashyap, M. L. (1973). Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man. Journal of Clinical Investigation 52, 3238.CrossRefGoogle ScholarPubMed
Humphreys, S. M., Fisher, R. M. & Frayn, K. N. (1990). Micro-method for measurement of sub-nanomole amounts of triacylglycerol. Annals of Clinical Biochemistry 27, 597598.CrossRefGoogle ScholarPubMed
Karpe, F., Steiner, G., Olivecrona, T., Carlson, L. A. & Hamsten, A. (1993). Metabolism of triglyceride-rich lipoproteins during alimentary lipemia. Journal of Clinical Znvestigution 91, 748758.CrossRefGoogle ScholarPubMed
Lewis, G. F., OMeara, N. M., Soltys, P. A., Blackman, J. D., Iverius, P. H., Druetzler, A. F., Getz, G. S. & Polonsky, K. S. (1990) Postprandial lipoprotein metabolism in normal and obese subjects: comparison after the vitamin A fat-loading test. Journal of Clinical Endocrinology and Metabolism 71, 10411050.CrossRefGoogle ScholarPubMed
Lewis, G. F., OMeara, N. M., Soltys, P. A., Blackman, J. D., Iverius, P. H., Pugh, W. L., Getz, G. S. & Polonsky, K. S. (1991). Fasting hypertriglyceridemia in noninsulin-dependent diabetes mellitus is an important predictor of postprandial lipid and lipoprotein abnormalities. Journal of Clinical Endocrinology and Metabolism 72, 934944.CrossRefGoogle ScholarPubMed
Mann, C. J., Yen, F. T., Grant, A. M. & Bihain, B. E. (1991). Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. Journal of Clinical Investigation 88, 20592066.CrossRefGoogle ScholarPubMed
Miesenböck, G. & Patsch, J. R. (1992) Postprandial hyperlipidemia: the search for the atherogenic lipoprotein. Current Opinion in Lipidology 3, 196201.CrossRefGoogle Scholar
O'Meara, N. M., Lewis, G.F., Cabana, V. G., Iverius, P. H., Getz, G. S. & Polonsky, K. S. (1992). Role of basal triglyceride and high density lipoprotein in determination of postprandial lipid and lipoprotein responses. Journal of Clinical Endocrinology and Metabolism 75, 465471.Google Scholar
Patsch, J. R., Karlin, J. B., Scott, L. W., Smith, L. C. & Gotto, A. M. Jr. (1983). Inverse relationship between blood levels of high density lipoprotein subfraction 2 and magnitude of postprandial lipemia. Proceedings of the National Academy of Sciences 80, 14491453.CrossRefGoogle ScholarPubMed
Patsch, J. R., Prasad, S., Gotto, A. M. Jr. & Bengtsson-Olivecrona, G. (1984). Postprandial lipemia. A key for the conversion of high density lipoprotein, into high density lipoprotein, by hepatic lipase. Journal of Clinical Investigation 74, 20172023.CrossRefGoogle ScholarPubMed
Potts, J. L., Fisher, R. M., Humphreys, S. M., Coppack, S. W., Gibbons, G. F. & Frayn, K. N. (1991). Peripheral triacylglycerol extraction in the fasting and post-prandial states. Clinical Science 81, 621626.CrossRefGoogle ScholarPubMed
Redgrave, T. G. & Carlson, L. A. (1979). Changes in plasma very low density and low density lipoprotein content, composition, and size after a fatty meal in normo- and hypertriglyceridemic man. Journal of Lipid Research 20, 211229.CrossRefGoogle ScholarPubMed
Simpson, H. S., Williamson, C. M., Olivecrona, T., Pringle, S., Maclean, J., Lorimer, A. R., Bonnefous, F., Bogaievsky, Y., Packard, C. J. & Shepherd, J. (1990). Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 85, 193202.CrossRefGoogle ScholarPubMed
Tall, A. R., Blum, C. B., Forester, G. P. & Nelson, C. A. (1982) Changes in the distribution and composition of plasma high density lipoproteins after ingestion of fat. Journal of Biological Chemistry 257, 198207.CrossRefGoogle ScholarPubMed
Zilversmit, D. B. (1979). Atherogenesis: a postprandial phenomenon. Circulation 60, 473485.CrossRefGoogle ScholarPubMed