Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T15:58:27.775Z Has data issue: false hasContentIssue false

Experiments with the long-term rumen simulation technique (Rusitec); response to supplementation of basal rations

Published online by Cambridge University Press:  09 March 2007

J. W. Czerkawski
Affiliation:
The Hannah Research Institute, Ayr, Scotland KA6 5HL
Grace Breckenridge
Affiliation:
The Hannah Research Institute, Ayr, Scotland KA6 5HL
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. It is shown that a basal roughage diet can be successfully supplemented with glucose, as long as nitrogen is not limiting. Lack of N depresses the digestibility of the basal ration, results in incomplete fermentation and the increased recoveries of N are consistent with fixation of atmospheric N2.

2. Using a complex, but soluble supplement (whey powder) it is shown that reproducible incremental measurements can be made and that the supplement used gives increases in production of characteristic end-products only (carbon dioxide, methane, acetic and butyric acids).

3. The location of the solid dietary components within the reaction vessel is not important and it is possible to measure changes in a particular component in the presence of others. It is shown that there is sequestration of bacteria and protozoa on the solid digesta.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Cottyn, R. G. & Boucque, C. F. (1968). J. agric. Fd Chem. 16, 105.Google Scholar
Crampton, E. W. & Maynard, L. A. (1938). J. Nutr. 15, 383.CrossRefGoogle Scholar
Czerkawski, J. W. (1974). J. Sci. Fd Agric. 25, 45.Google Scholar
Czerkawski, J. W. (1976 a). Br. J. Nutr. 36, 311.CrossRefGoogle Scholar
Czerkawski, J. W. (1976 b). J. Sci. Fd Agric. 27, 323.Google Scholar
Czerkawski, J. W. (1978). J. Dairy Sci. 61, 1261CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1977). Br. J. Nutr. 38, 371.Google Scholar
Czerkawski, J. W. & Breckenridge, G. (1978 a). Proc. Nutr. Soc. 37, 53A.Google Scholar
Czerkawski, J. W. & Breckenridge, G. (1978 b). Proc. Nutr. Soc. 37, 54A.Google Scholar
Czerkawski, J. W., Christie, W. W., Breckenridge, G. & Hunter, M. L. (1975). Br. J. Nutr. 34, 25.Google Scholar
Czerkawski, J. W. & Clapperton, J. L. (1968). Lab. Pract. 17, 994.Google Scholar
Demeyer, D. I. &Van Nevel, C. J. (1974). In Digestion and Metabolism in the Ruminant. [McDonald, M. W. and Warner, A. C. I. editors]. Armidale: University of New England Press.Google Scholar
Granhall, U. & Ciszuk, P. (1971). J. gen. Microbiol. 65, 91.Google Scholar
Hobson, P. N., Summers, R., Postgate, J. R. &Ware, D. A. (1973). J. gen. Microbiol. 77, 225.Google Scholar
Isaacson, H. R., Hinds, F. C., Bryani, M. P. & Owens, F. N. (1975). J. Dairy Sci. 58, 1645.Google Scholar
Jones, K. & Thomas, J. G. (1974). J. gen. Microbiol. 85, 97.Google Scholar
Marty, R. J. & Demeyer, D. I. (1973). Br. J. Nutr. 30, 369.Google Scholar
Pryce, T. D. (1969). Analyst, Lond. 94, 1151.Google Scholar
Spies, J. R. (1952). J. biol. Chem. 195, 65.Google Scholar
Van Nevel, C. J., Demeyer, D. I. & Henderickx, J. (1972). Proceedings of 2nd Zul. Congress on Animal FeedingMadrid p. 27.Google Scholar
Van Soest, P. J. (1963). J. Ass. off. analyt. Chem. 46, 829.Google Scholar
Van Soest, P. J. & Wine, R. M. (1967). J. Ass. off. analyt. Chem. 50, 50.Google Scholar