Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T01:19:00.250Z Has data issue: false hasContentIssue false

Evidence that adverse effects of zinc deficiency on essential fatty acid composition in rats are independent of food intake

Published online by Cambridge University Press:  09 March 2007

Stephen C. Cunnane
Affiliation:
Department of Nutritional Sciences, University of Toronto, Toronto, CanadaM5S 1A8
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Young male rats were fed on diets containing 3·4, 36 or 411 mg zinc/kg for 10 weeks in order to determine whether effects of Zn deficiency on plasma and liver essential fatty acid composition could be distinguished from those of reduced protein and energy intake.

2. Fatty acid analysis revealed that a Zn intake of 3·4 mg/kg (plasma Zn 0·80 v. 1·97 mmol/l in controls fed on 36 mg Zn/kg) resulted in a significant increase in the linoleic acid: arachidonic acid ratio in both plasma and liver phospholipids in comparison with rats fed on 36 or 411 mg Zn/kg.

3. Zn supplementation (411 mg/kg) decreased the linoleic acid: arachidonic acid ratio in plasma phosphatidylserine compared with that of the controls.

4. The previously reported increase in arachidonic acid (mol %) in liver triacylglycerol of Zn-deficient rats was shown to be a function of a reduced liver triacylglycerol pool size; quantitatively, triacylglycerol content of arachidonic acid in the liver was not significantly affected by Zn intake.

Type
Other Studies Relevant to Human Nutrition
Copyright
Copyright © The Nutrition Society 1988

References

American Institute of Nutrition (1977). Journal of Nutrition 107, 13401348.Google Scholar
Ayala, S. & Brenner, R. R. (1983). Acta Physiologica Latinoamericana 33, 193204.Google Scholar
Bettger, W. J., Reeves, P. G., Moscatelli, E. A., Reynolds, G. & O'Dell, B. L. (1979). Journal of Nutrition 109, 480488.Google Scholar
Bieri, J. & Prival, E. (1966). Journal of Nutrition 89, 5561.Google Scholar
Clejan, S., Castro-Magana, M., Collipp, P. J., Jonas, E. & Maddaiah, V. T. (1982). Lipids 17, 129135.Google Scholar
Cunnane, S. C. (1982). Progress in Lipid Research 21, 7390.Google Scholar
Cunnane, S. C. (1985). In Trace Elements in Man and Animals, vol. 5, pp. 7075 [Mills, C. F., Bremner, I. and Chesters, J. K., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Cunnane, S. C., Huang, Y.-S. & Manku, M. S. (1986). Biochimica Biophysica Acta 876, 183186.Google Scholar
Cunnane, S. C. & Krieger, I. (1988). Journal of the American College of Nutrition (In the Press).Google Scholar
Cunnane, S. C., Manku, M. S. & Horrobin, D. F. (1984). Proceedings of the Society for Experimental Biology and Medicine 177, 141146.Google Scholar
Fields, H. P. & Kelleher, J. (1983). Proceedings of the Nutrition Society 43, 54A.Google Scholar
Fogerty, A. C., Ford, G. L., Dreosti, I. E. & Tinsley, I. J. (1985). Nutrition Reports International 32, 10091020.Google Scholar
Hill, E. G., Johnson, S. B., Lawson, L. D., Mafouz, M. M. & Holman, R. T. (1982). Proceedings of the National Academy of Sciences, USA 79, 953957.Google Scholar
Huang, Y. S., Cunnane, S. C., Horrobin, D. F. & Davignon, J. (1982). Atherosclerosis 42, 193207.Google Scholar
Koletzko, B., Bretschneider, A. & Bremer, H. J. (1984). European Journal of Pediatrics 143, 310313.Google Scholar
Kramer, T. R., Briske-Anderson, M., Johnson, S. B. & Holman, R. T. (1984). Journal of Nutrition 114, 12241230.Google Scholar
Krieger, I., Alpern, B. E. & Cunnane, S. C. (1986). American Journal of Clinical Nutrition 43, 955958.Google Scholar
Odutunga, A. A. (1982). Clinical and Experimental Pharmacology and Physiology 9, 213221.Google Scholar
Stewart, J. C. M. (1980). Analytical Biochemistry 104, 1014.Google Scholar
Tsai, S. L., Craig-Schmidt, M. C., Weete, J. D. & Keith, R. E. (1983). Federation Proceedings 42, 823.Google Scholar