Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T04:07:16.689Z Has data issue: false hasContentIssue false

Estimation of the fermentability of dietary fibre in vitro: a European interlaboratory study

Published online by Cambridge University Press:  09 March 2007

J-L. Barry
Affiliation:
INRA, Laboratory of Applied Technology and Nutrition, BP 1627, 44316 Nantes cedex 03, France
C. Hoebler
Affiliation:
INRA, Laboratory of Applied Technology and Nutrition, BP 1627, 44316 Nantes cedex 03, France
G. T. MacFarlane
Affiliation:
MRC Dunn Clinical Nutrition Centre, Hills Road, Cambridge CB2 2DH
S. MacFarlane
Affiliation:
MRC Dunn Clinical Nutrition Centre, Hills Road, Cambridge CB2 2DH
J. C. Mathers
Affiliation:
Department of Biological and Nutritional Science, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
K. A. Reed
Affiliation:
Department of Biological and Nutritional Science, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
P. B. Mortensen
Affiliation:
Department of Medicine A 2102, Rigshospitalet, DK 2100 Copenhagen, Denmark
I. Nordgaard
Affiliation:
Department of Medicine A 2102, Rigshospitalet, DK 2100 Copenhagen, Denmark
I. R. Rowland
Affiliation:
BIBRA, Woodmansterne Road, Carshalton SM5 4DS
C. J. Rumney
Affiliation:
BIBRA, Woodmansterne Road, Carshalton SM5 4DS
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Five European laboratories tested a simple in vitro batch system for dietary fibre fermentation studies. The inoculum was composed of fresh human faeces mixed with a carbonate-phosphate buffer complex supplemented with trace elements and urea. Five dietary fibre sources (cellulose, sugarbeet fibre, soyabean fibre, maize bran and pectin) were used by each laboratory on three occasions to determine pH, residual non-starch polysaccharides (NSP) and short-chain fatty acid production during fermentation. Cellulose and maize bran degradabilities were very low (7·2 (SE 10·8) and 6·2 (SE 9·1) % respectively after 24 h), whereas pectin and soyabean fibre were highly degraded (97·4 (SE 4) and 91·1 (SE 3·4)% respectively after 24 h). Sugarbeet fibre exhibited an intermediate level of degradability (59·5 (SE 14·9)%). Short-chain fatty acid production was closely related to NSP degradation (r 0·99). Although each variable was ranked similarly by all laboratories, some differences occurred with respect to absolute values. However, the adaptation of donors to the experimental substrates was not an influential factor. Interlaboratory differences could be reduced either by adding less substrate during incubations or using less-diluted inocula. In vitro fermentations with inocula made from human faeces and from rat caecal contents gave similar results. There was a close correspondence between the data obtained in the present experiment and those previously published in in vivo studies in the rat using the same fibres. The in vitro batch system tested during the present study provides a rapid means of obtaining quantitative estimates of the fermentation and the estimation of the energy content of new sources of dietary fibre.

Type
Fermentability of dietary fibre
Copyright
Copyright © The Nutrition Society 1995

References

Adiotomre, J., Eastwood, M. A., Edwards, C. A. & Brydon, W. (1990) Dietary fibre: in vitro methods that anticipate nutrition and metabolic activity in humans. American Journal of Clinical Nutrition 52, 128134.Google ScholarPubMed
Barry, J.-L., Chourot, J.-M., Bonnet, C., Kozlowski, F. & David, A. (1989) In vitro fermentation of neutral monosaccharides by ruminal and human fecal microflora. Acta Veterinaria Scandinavica 86,Suppl., 9395.Google Scholar
Cherbut, C. (1995) Effects of short chain fatty acids on gastro-intestinal motility. In Physiological and Clinical Aspects of Short Chain Fatty Acid Metabolism, pp. 191207 [Cummings, J.H., Sakata, T. and Rombaud, J. L., editors]. Cambridge: Cambridge University Press.Google Scholar
Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E. & Macfarlane, G. T. (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 12211227.CrossRefGoogle ScholarPubMed
Daniéli, P. (1975) Théorie et méthodes statistiques. Vol II: les méthodes de l'interférence statistique, pp. 121122. Gembloux, Belgium: Les presses agronomiques de Gembloux.Google Scholar
Durand, M., Dumay, C., Beaumatin, P. & Morel, M.-T. (1988) Use of the rumen simulation technique (RUSITEC) to compare microbial digestion of various by-products. Animal Feed Science and Technology 21, 197204.Google Scholar
Edwards, C. A., Duerden, B. I. & Read, N. W. (1985) Metabolism of mixed human colonic bacteria in a continuous culture mimicking the human cecal contents. Gastroenterology 88, 19031909.Google Scholar
Ehle, F. R., Jeraci, J. L., Robertson, J. B. & Van Soest, P. J. (1982) The influence of dietary fibre on digestibility, rate of passage and gastrointestinal fermentations in pigs. Journal of Animal Science 55, 10711080.Google Scholar
Englyst, H. N. & Hudson, G. J. (1987) Colorimetric method for routine measurement of dietary fibre as non-starch polysaccharides. A comparison with gas-liquid chromatography. Food Chemistry 24, 6376.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1988) An improved method for the measurement of dietary fibre as the non-starch polysaccharides in plant foods. Journal of the Association of Offcial Analytical Chemists 71, 808814.Google Scholar
Englyst, H. N., Hay, S. & Macfarlane, G. T. (1987) Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiology Ecology 95, 163171.Google Scholar
Faisant, N., Planchot, V., Kozlowski, F., Pacouret, M.-P., Colonna, P. & Champ, M. (1995) Resistant starch determination adapted to products containing high levels of resistant starch. Science des Aliments 15, 8389.Google Scholar
Fidgor, S. K. & Bianchine, J. R. (1983) Caloric utilization and disposition of [14 C]polydextrose in man. Journal of Agricultural and Food Chemistry 31, 389393.Google Scholar
Flick, J. A. & Perman, J. A. (1989) Nonabsorbed carbohydrate: effect on fecal pH in methane-excreting and non-excreting individuals. American Journal of Clinical Nutrition 49, 12521257.CrossRefGoogle Scholar
Gibson, G. R., Cummings, J. H. & Macfarlane, G. T. (1988) Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Applied and Environmental Microbiology 54, 27502755.CrossRefGoogle Scholar
Goodlad, J. S. & Mathers, J. C. (1988) Effects of food carbohydrates on large intestinal fermentation in vitro. Proceedings of the Nutrition Society 47, 176A.Google Scholar
Gorin, N., Bonisolli, F., Heidema, F. T., Klop, W. & Williams, A. A. (1978) Changes in starch content and amylase zymograms during storage of Golden delicious and Cox's orange pippin apples. Zeischtrift für Lebensmittel-Undersuchung und -Forschung 166, 151161.Google Scholar
Guillon, F., Barry, J.-L. & Thibault, J.-F. (1992) Effect of autoclaving sugar-beet fibre on its physico-chemical properties and its in-vitro degradation by human faecal flora. Journal of the Science of Food and Agriculture 60, 6979.CrossRefGoogle Scholar
Hoebler, C., Barry, J.-L., David, A. & Delort-Laval, J. (1989) Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas-liquid chromatography. Journal of Agricultural and Food Chemistry 37, 360367.Google Scholar
Holdeman, L. V., Cato, E. P. & Moore, W. E. C. (eds) (1977) Anaerobic Laboratory Manual, 4th ed. Blacksburg, VA: VPI Anaerobe Laboratory.Google Scholar
Jeraci, J. L. & Horvath, P. J. (1989) In vitro fermentation of dietary fiber by human fecal organisms. Animal Feed Science and Technology 23, 121140.CrossRefGoogle Scholar
Jouany, J.-P. (1982) Dosage des acides gras volatils (AGV) et des alcools dans les contenus digestifs, les jus d'ensilage, les cultures bactériennes et les contenus de fermenteurs anaérobies (Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermenter contents). Science des Aliments 2, 131144.Google Scholar
Kravtchenko, T. P., Voragen, A. G. J. & Pilnik, W. (1992) Analytical comparison of three industrial pectin preparations. Carbohydrate Polymers 18, 1725.Google Scholar
Levrat, M. A., Behr, S. R., Rémésy, C. & Demigné, C. (1991) Effect of soybean fiber on cecal digestion in rats previously adapted to a fiber-free diet. Journal of Nutrition 121, 672678.CrossRefGoogle ScholarPubMed
Livesey, G. (1990) Energy value of unavailable carbohydrates and diets. An inquiry and analysis. American Journal of Clinical Nutrition 51, 617637.CrossRefGoogle ScholarPubMed
Livesey, G., Smith, T, Eggum, B. O., Tetens, I. H., Nyman, M., Roberfroid, M., Delzenne, N., Schweizer, T. F. & Decombaz, J. (1995) Determination of digestible energy values and fermentabilities of dietary fibre supplements: a European interlaboratory study in vivo. British Journal of Nutrition 74, 289302.Google Scholar
Lyutskanov, N., Pishtiiskii, I. & Krachanov, K. (1974) Enzymic purification of apple pectin. In Pervyi simposium Proizvodstvo i primeneie fermentnykh preparatov v pishchevoi promyshlennosti izhivotnovodstve 726727 [Klyushnik, G, Rzhendovski, V, Rembovski, E., Nestorov, N., Grozdanov, A., Konishev, P., Uzunov, G., Chara, S., Angelov, T., Grigorov, I. and Angelova, M., editors]. USSR: Koordinatsionnyi Tseutr po Problem.Google Scholar
McBurney, M. I., Horvath, P. J., Jeraci, J. L. & Van Soest, P. J. (1985) Effect of in vitro fermentation using human faecal inoculum on the water-holding capacity of dietary fibre. British Journal of Nutrition 53, 1724.Google Scholar
McBurney, M. I. & Thompson, L. U. (1987) Effect of faecal inoculum on in vitro fermentation variables. British Journal of Nutrition 58, 233243.CrossRefGoogle ScholarPubMed
McBurney, M. I. & Thompson, L. U. (1989) Effect of human faecal donor on in vitro fermentation variables. Scandinavian Journal of Nutrition 24, 359367.Google Scholar
McBurney, M. I., Thompson, L. U., Cuff, D. J. & Jenkins, D. J. A. (1988) Comparison of ileal effluents, dietary fibers, and whole foods in predicting the physiological importance of colonic fermentation. American Journal of Gastroenterology 83, 536540.Google Scholar
Macfarlane, G. T., Allison, C., Gibson, S. A. W. & Cummings, J. H. (1988) Contribution of the microflora to proteolysis in the human large intestine. Journal of Applied Bacteriology 64, 3746.Google Scholar
Mallett, A. K., Bearne, C. A. & Rowland, I. R. (1983) Metabolic activity and enzyme induction in rat fecal microflora maintained in continuous culture. Applied and Environmental Microbiology 46, 591595.CrossRefGoogle ScholarPubMed
Mathers, J. C., Fernandez, F., Hill, M. J., McCarthy, P. T., Shearer, M. J. & Oxley, A. (1990) Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats. British Journal of Nutrition 63, 639652.CrossRefGoogle ScholarPubMed
Mathers, J. C. & Finlayson, H. J. (1989) Manipulation of rat caecal metabolism by incubating Avoparin and pectin in the diet. Proceedings of the Nutrition Society 48, 139A.Google Scholar
Michel, C., Lahaye, M., Bonnet, C., Mabeau, S. & Barry, J.-L. (1996) In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. British Journal of Nutrition (In the Press).CrossRefGoogle ScholarPubMed
Miller, T. M. & Wolin, M. J. (1981) Fermentation by the large intestine microbial community in an in vitro semicontinuous culture system. Applied and Environmental Microbiology 42, 400407.Google Scholar
Mortensen, P. B., Heghøj, J., Rannen, T., Rasmussen, H. S. & Holtug, L. (1989) Short-chain fatty acids in bowel contents after intestinal surgery. Gastroenterology 97, 10901096.Google Scholar
Mortensen, P. B., Holtug, K. & Rasmussen, H. S. (1988) Short-chain fatty acid production from mono- and disaccharides in a fecal incubation system: implications for colonic fermentation of dietary fiber in humans. Journal of Nutrition 118, 321325.Google Scholar
Mortensen, P. B., Hove, H., Clausen, M. R. & Holtug, K. (1991) Fermentation to short-chain fatty acids and lactate in human faecal batch cultures. Scandinavian Journal of Gastroenterology 26, 12851294.Google Scholar
Mortensen, P. B. & Nordgaard-Andersen, I. (1993) The dependence of the in vitro fermentation of dietary fibre to short-chain fatty acids on the contents of soluble non-starch polysaccharides. Scandinavian Journal of Gastroenterology 28, 418422.CrossRefGoogle ScholarPubMed
Nyman, M., Asp, N. G., Cummings, J. H. & Wiggins, H. (1986) Fermentation of dietary fibre in the intestinal tract: comparison between man and rat. British Journal of Nutrition 55, 487496.CrossRefGoogle Scholar
Patil, D. H., Westaby, D., Mahida, Y. R., Palmer, K. R., Rees, R., Clark, M. L., Dawson, A. M. & Silk, D. B. A. (1987) Comparative modes of action of lactitol and lactulose in the treatment of hepatic encephalopathy. Gut 28, 255259.CrossRefGoogle ScholarPubMed
Perman, J. A. & Modler, S. (1982) Glycoproteins as substrates for production of hydrogen and methane by colonic bacterial flora. Gastroenterology 83, 388393.Google Scholar
Pishchiiski, I. & Lyutskanov, N. (1978) Improving the purity of apple pectin by use of amylolytic preparations. Nauchni-Trudovev-Vissh-Institut-po-Khranitelna-i- Vkusova-Promyshlennost 25, 347350.Google Scholar
Prosky, L., Asp, N. G., Schweizer, T., De Vries, J. W. & Furda, I. (1992) Determination of insoluble and soluble dietary fiber in foods and food products: collaborative study. Journal of the Association of Official Analytical Chemists 75, 360367.Google Scholar
Rasmussen, H. S., Holtug, K., Andersen, J. R., Krag, E. & Mortensen, P. B. (1987) The influence of ispaghula husk and lactulose on the in vivo and the in vitro production capacity of short-chain fatty acids in humans. Scandinavian Journal of Gastroenterology 22, 406410.Google Scholar
Roediger, W. E. W. (1982) Utilisation of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83, 424429.CrossRefGoogle ScholarPubMed
Salvador, V., Cherbut, C., Barry, J.-L., Bertrand, D., Bonnet, C. & Delort-Laval, J. (1993) Sugar composition of dietary fibre and short-chain fatty acid production during in vitro fermentation by human bacteria. British Journal of Nutrition 70, 189197.Google Scholar
Saulnier, L., Mestres, C., Doublier, J.-L., Roger, P. & Thibault, J.-F. (1993) Studies of polysaccharides solubilized during alkaline cooking of maize kernels. Journal of Cereal Science 17, 267276.Google Scholar
Sawai, K., Sandonsuge, Y., Izuiyama, Y. & Okagawa, Y. (1978) Biochemical studies on apple fruits. III. Some physical properties of starch granules observed through an X-ray diffractometer and a microscope. Bulletin of the Faculty of Agriculture, Hirosaki University 29, 19.Google Scholar
Schooley, D. L., Kubiak, F. M. & Evans, J. V. (1985) Capillary gas chromatographic analysis of volatile and non-volatile organic acids from biological samples as the t-butylmethylsilyl derivatives. Journal of Chromatographic Science 23, 385390.Google Scholar
Slade, A. P., Wyatt, G. M., Bayliss, C. E. & Waites, W. M. (1987) Comparison of populations of human faecal bacteria before and after in vitro incubation with plant cell wall substrates. Journal of Applied Bacteriology 62, 231240.CrossRefGoogle ScholarPubMed
Stephen, A. M. & Cummings, J. H. (1980) The microbial contribution to human faecal mass. Journal of Medical Microbiology 13, 4556.Google Scholar
Stevens, J. H., Selvendran, R. R., Bayliss, C. E. & Turner, R. (1988) Degradation of cell wall material of apple and wheat bran by faecal bacteria in vitro. Journal of the Science of Food and Agriculture 44, 151166.CrossRefGoogle Scholar
Titgemeyer, E. C., Bourquin, L. D., Fahey, G. C. & Garleb, K. A. (1991) Fermentability of various fiber sources by human fecal bacteria in vitro. American Journal of Clinical Nutrition 53, 14181424.CrossRefGoogle ScholarPubMed
Tomlin, J. & Read, N. W. (1988) The relation between bacterial degradation of viscous polysaccharides and stool output in human beings. British Journal of Nutrition 60, 467475.Google Scholar
Tomlin, J., Read, N. W., Edwards, C. A. & Duerden, B. I. (1986) The degradation of guar gum by faecal incubation system. British Journal of Nutrition 55, 481486.CrossRefGoogle ScholarPubMed
Vérité, R. & Demarquilly, C. (1978) Qnalité des matiéres azotées des aliments pour ruminants (Quality of crude proteins in feeds for ruminants). In La Vache Laitiére, pp. 143157. Versailles: INRA Publications.Google Scholar
Vince, A. J., McNeil, N. I., Wager, J. D. & Wrong, O. M. (1990) The effect of lactulose, pectin, arabinogalactan and cellulose on the production of organic acids and metabolism of ammonia by intestinal bacteria in a faecal incubation system. British Journal of Nutrition 63, 1726.Google Scholar
Wolever, T. M. S., Spadafora, P. & Ashuis, H. (1992) Interaction between colonic acetate and propionate in humans. American Journal of Clinical Nutrition 53, 681687.CrossRefGoogle Scholar
Wyatt, G. M. & Horn, N. (1988) Fermentation of resistant starches by human and rat intestinal bacteria. Journal of the Science of Food and Agriculture 44, 281288.Google Scholar