Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T11:25:55.529Z Has data issue: false hasContentIssue false

Energy metabolism in healthy black Kenyan children

Published online by Cambridge University Press:  09 March 2007

Maureen B. Duggan
Affiliation:
Department of Paediatrics, Shefield University, Shefield Children's Hospital, Shefield S10 2TH
R. D. G. Milner
Affiliation:
Department of Paediatrics, Shefield University, Shefield Children's Hospital, Shefield S10 2TH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Twenty-four healthy black Kenyan children, mean age 29 (SD 19) months, were studied over a 24 h period. Energy expenditure (EE) was determined using a ventilated-hood indirect calorimeter; measuring oxygen consumption and carbon dioxide production. Metabolizable energy intake was measured in twenty children. Anthropometric measurements were used to estimate surface area and lean body-weight.

2. The mean daily intake of metabolizable energy was 338.4 (se 28.4) kJ/kg; 70% of gross dietary energy being provided by carbohydrate. The level of postprandial EE was significantly (P > 0.05) higher than the resting level (12.6 (se 0.47) and 11.38 (se 0.37) kJ/kg per h respectively) while the level of the postprandial respiratory quotient (RQ) was similar to the resting level (0.94 (se 0.02)) and 0.98 (se 0.03 respectively). In 33% of total observations of the resting RQ the value was more than 1.0. These findings suggest that short-term fat storage may be a normal feature of metabolism in children, and also that the energy cost of (postprandial) fat synthesis is increased by a high-carbohydrate diet.

3. Values for the resting metabolic rate and various estimators of body size were compared using regression analysis. It was evident that, in these young children with considerable variation in body composition, body-weight remained a satisfactory metabolic-size estimator.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Acheson, K. J., Schutz, Y., Bessard, T., Ravussin, E., Jequier, E. & Flatt, J. P. (1984). American Journal of Physiology 246, E62E70.Google Scholar
Ashworth, A. (1969). Nature 223, 407409.CrossRefGoogle Scholar
Banerjee, S. & Sen, R. (1958). Journal of Applied Physiology 12, 2933.CrossRefGoogle Scholar
Benedict, F. G. & Talbot, F. B. (1914). Carnegie institute of washington, Publication no. 203, pp. 2635. Washington DC: Carnegie institute.Google Scholar
Brobeck, J. R. & Dubois, A. (1980). Medical physiology 14th ed., pp. 13511365. [Mountcastle, V. B., editor]. St louis: C. V. Mosby.Google Scholar
Brock, J. F. & Friis Hansen, B. (1965). Human body Composition. Symposium of the Society for the study of Human Biology, vol. 8, pp. 255266 [Brozek, J., editor]. London: Pergamon Press.Google Scholar
Brooke, O. G., Alvear, J. & Arnold, M. (1979). Pediatric Research 13, 215220.CrossRefGoogle Scholar
Brooke, O. G. & Ashworth, A. (1972). British Journal of Nutrition 27, 407415.CrossRefGoogle Scholar
Chessex, P., Reichman, B. L., Verellen, G. J. E., Putet, G, Smith, J. M., Heim, T. & Swyer, P. (1981). Journal of Pediatrics 99, 761766.CrossRefGoogle Scholar
Dauncey, M. J., Gandy, G. & Gairdner, D. (1977). Archives of Disease in Childhood 52, 223227.CrossRefGoogle Scholar
Duggan, M. B. (1985). A study of energy balance in children during and after acute measles. MD thesis, London University.Google Scholar
Duggan, M. B., Alwar, J. & Milner, R. D. G. (1986). Archives of Disease in Childhood 61, 6166.Google Scholar
Duggan, M. B., Tobin, G. & Milner, R. D. G. (1985). In Human energy Metabolism. EURONUT report no. 5, pp. 113118 [van Es, A. J. H., editor]. Wageningen: University of Wageningen.Google Scholar
Flatt, J. P. (1978). In Recent Advances in Obesity, pp. 211228 [Bray, G., editor]. New york: Newman.Google Scholar
Fomon, S. J. (1967). Pediatrics 40, 867870.CrossRefGoogle Scholar
Fomon, S. J. (editor) (1974). In Infant Nutrition, 2nd ed., pp. 2033. London: W. B. Saunders.Google Scholar
Friis Hansen, B. (1971). Pediatrics 47, 264274.Google Scholar
Gehan, E. A. & George, G. (1970). Cancer Chemotherapy Reports 54, 225235.Google Scholar
Griffiths, M. & Payne, P. (1976). Nature 260, 698700.CrossRefGoogle Scholar
Harvey, D. (1951). The chemical Composition of some Kenyan Foodstuffs; Records of the Medical Research Laboratory no. 10. Nairobi: Medical Department, Government of Kenya.Google Scholar
Hervey, G. R. & Tobin, G. (1983). Clinical Science 64, 718.CrossRefGoogle Scholar
Holliday, M. A. (1971). Pediatrics 47, 169179.Google Scholar
Karlberg, P. (1952). Acta Paediatrica Scandinavica 41, Suppl. 89, 9142.CrossRefGoogle Scholar
Kien, C. L., Rohrbaugh, D. K., Burke, J. F. & Young, V. R. (1978). Pediatric Research 12, 211216.Google Scholar
Klieber, M. (1964). Energy Metabolism, European Association of Animal Production publication no. 11, pp. 427435 [Blaxter, K. L., editor]. London: Academic press.Google Scholar
Lewis, R. C., Duval, A. M. & Iliff, A. (1943). Journal of Paediatrics 23, 118.Google Scholar
McKillop, F. M. & Durnin, J. V. G. A. (1981). Human Nutrition: Applied Nutrition 36A, 405421.Google Scholar
Miller, D. T. & Blyth, C. S. (1953). Journal of Applied Physiology 5, 311316.Google Scholar
Millward, D. J., Garlick, P. J. & Reeds, P. J. (1976). Proceedings of the Nutrition Society 35, 339349.Google Scholar
Montgomery, R. D. (1962). Journal of Clinical Investigation 8, 16531663.CrossRefGoogle Scholar
Moulton, C. R. (1923). Journal of Biologic Chemistry 57, 7997.CrossRefGoogle Scholar
Oyenuga, V. A. (editor) (1968). In Nigeria's Food and Feeding Stuffs, 3rd ed., Ibadan, Nigeria: Ibadan University Press.Google Scholar
Paul, A. A. & Southgate, D. A. T. (1978). McCance and Widdowson's The Composition of Food, 4th ed., London: H.M. Stationery Office.Google Scholar
Perissé, J., Sizaret, F. & Francois, P. (1969). FAO Nutritional Newsletter 7, 19.Google Scholar
Sauer, P. J. J., Pearse, R. G., Dane, H. J. & Visser, H. K. A. (1979). In Nutrition and Metabolism of the Fetus and Infant, pp. 92107. [Visser, H. K. A., editor]. The Hague: Martinus Nijhoff.Google Scholar
Spady, D. W., Payne, P. R., Picou, D. & Waterlow, J. C. (1976). American Journal of Clinical Nutrition 29, 10731088.Google Scholar
Standard, K. J., Willis, V. G. & Waterlow, J. C. (1959). American Journal of Clinical Nutrition 7, 271279.Google Scholar
Waterlow, J. C., Buzina, R., Keller, M., Lane, J. M., Nichaman, M. Z. & Tanner, J. M. (1977). Bulletin of the World Health Organization 55, 489498.Google Scholar
Weir, J. B., de, V. (1949). Journal of Physiology 109, 19.CrossRefGoogle Scholar
Whyte, R. K. (1983). Pediatric Research 17, 891898.Google Scholar
World Health Organization (1973). Energy and Protein Requirements. Technical Report Series no. 522. Geneva: WHO.Google Scholar
World Health Organization (1983). Measuring Change in Nutrition Status, pp. 8796. Geneva: WHO.Google Scholar