Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T11:33:28.307Z Has data issue: false hasContentIssue false

The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables

Published online by Cambridge University Press:  09 March 2007

M. Gillooly
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
T. H. Bothwell
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
J. D. Torrance
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
A. P. MacPhail
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
D. P. Derman
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
W. R. Bezwoda
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
W. Mills
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
R. W. Charlton
Affiliation:
Joint University/South African MRC Iron and Red Cell Metabolism Unit, Department of Medicine, University of the Witwatersrand, Medical School, York Road, Parktown, Johannesburg, 2193, South Africa
Fatima Mayet
Affiliation:
Department of Medicine, University of Natal, Durban, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Non-haem iron absorption from a variety of vegetable meals was studied in parous Indian Women, using the erythrocyte utilization of radioactive Fe method.

2. The studies were undertaken to establish whether Fe absorption could be correlatedwith the chemical composition of the foodstuff.

3. Addition of the following organic acids commonly found in vegetables, improved the geometric mean Fe absorption from a basic rice meal as follows: from 0·028 to 0·085 with 1 g citric acid, from 0·031 to 0·081 with 15 mg ascorbic acid, from 0·048 to 0·095 with 1 g L-malic acid, from 0·041 to 0·096 with 1 g tartaric acid. The only exception was oxalic acid; the addition of 1 g calciumoxalate to cabbage (Brassica oleraceae) was associated with some depression in Fe absorption from 0·320 to 0·195.

4. There was a marked inhibition of the geometric mean absorption when 500 mg tannic acid was added to a broccoli (Brassica oleraceae) meal (0·015 v. 0·297). Sodium phytate (2 g) caused a similar, though less profound inhibition (0·035 to 0·152).

5. When 3 mg ferrous sulphate was added to different vegetables the geometric mean absorption varied widely. Vegetables of low Fe bioavailability were wheat germ (Triticum aestivum) 0·007, aubergine (Solanum melongena) 0·007, butter beans (Phaseolus lunatus) 0·012, spinach (Spinacea oleraceae) 0·014, brown lentils (Lens culinaris) 0·024, beetroot greens (Beta vulgaris) 0·024 and green lentils (Lens culinaris) 0·032. In contrast, bioavailability was moderate or good with carrot (Daucus carota) 0·098, potato (Solanum tuberosum) 0·115, beetroot (Beta vulgaris) 0·185, pumpkin (Cucurbita mixta) 0·206, broccoli 0·260, tomato (Lycopersicon esculentum) 0·224, cauliflower (Brassica oleraceae) 0·263, cabbage 0·320, turnip (Brassica rapa) 0·327 and sauerkraut 0·327.

6. All the vegetables associated with moderate or good Fe bioavailability contained appreciable amounts of one or more of the organic acids, malic, citric and ascorbic acids.

7. Poor Fe bioavailability was noted in vegetables with high phytate contents (e.g. wheat germ 0·007, butter beans 0·012, brown lentils 0·024 and green lentils 0·032).

8. The fact that a number of vegetables associated with low Fe-absorption turned bluish-black when Fe was added to them, suggested that the total polyphenol content in them was high. The vegetables included aubergine spinach, brown lentils, green lentils and beetroot greens. When the total polyphenol content in all the vegetables tested was formally measured, there was a significant inverse correlation (r 0·859, P < 0·001) between it and Fe absorption. The inverse correlation between the non-hydrolysable polyphenol content and Fe absorption was r 0·901 (P < 0·001).

9. The major relevance of these findings is the fact that the total absorption of non-haem-Fe from a mixed diet may be profoundly influenced by the presence of single vegetables with either marked enhancing or inhibiting effects on Fe bioavailability.

Type
Paper of diract relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Apte, S. V. & Iyengar, L. (1970). Am. J. clin. Nutr. 23, 73.CrossRefGoogle Scholar
Bjorn-Rasmussen, E. & Hallberg, L. (1974). Nutr. Metab. 16, 94.CrossRefGoogle Scholar
Bothwell, T. H., Charlton, R. W., Cook, J. D. & Finch, C. A. (1979). Iron Metabolism in Man. Oxford: Blackwell.Google Scholar
Conradie, J. D. & Mbhele, B. E. L. (1980). S. Afr. med. J. 57, 282.Google Scholar
Cook, J. D., Layrisse, M., Martinez-Torres, C., Walker, R., Monsen, E. & Finch, C. A. (1972). J. clin. Invest. 51, 805.CrossRefGoogle Scholar
Cook, J. D. & Monsen, E. R. (1976). Am. J. clin. Nutr. 29, 859.CrossRefGoogle Scholar
Derman, D. P., Bothwell, T. H., MacPhail, A. P., Torrance, J. D., Bezwoda, W. R., Charlton, R. W. & Mayet, F. G. H. (1980). Scand. J. Haemat. 25, 193.Google Scholar
Derman, D. P., Bothwell, T. H., Torrance, J. D., Bezwoda, W. R., MacPhail, A. P., Kew, M. C., Sayers, M. H., Disler, P. B. & Charlton, R. W. (1980). Br. J. Nutr. 43, 271.CrossRefGoogle Scholar
Derman, D., Sayers, M., Lynch, S. R., Charlton, R. W. & Bothwell, T. H. (1977). Br. J. Nutr. 38, 261.CrossRefGoogle Scholar
Diem, K. & Lentner, C. (editors) (1970). Document Geigy Scientific Tables, 7th ed. Basel, Switzerland: J. R. Geigy S.A.Google Scholar
Disler, P. B., Lynch, S. R., Charlton, R. W., Bothwell, T. H., Walker, R. B. & Mayet, F. (1975). Br. J. Nutr. 34, 141.CrossRefGoogle Scholar
Disler, P. B., Lynch, S. R., Charlton, R. W., Torrance, J. D., Bothwell, T. H., Walker, R. B. & Mayet, F. (1975). Gut 16, 193.CrossRefGoogle Scholar
Disler, P. B., Lynch, S. R., Torrance, J. D., Sayers, M. H., Bothwell, T. H. & Charlton, R. W. (1975). S. Afr. J. med. Sci. 40, 109.Google Scholar
Eakins, J. D. & Brown, D. A. (1966). Int. J. appl. Radiat. Isotopes. 17, 391.CrossRefGoogle Scholar
Hallberg, L. (1974). Proc. Nutr. Soc. 33, 285.CrossRefGoogle Scholar
Hallberg, L. (1981). A. Rev. Nutr. 1, 123.CrossRefGoogle Scholar
Hallberg, L. & Bjorn-Rasmussen, E. (1972). Scand. J. Haemat. 9, 193.Google Scholar
Hallberg, L. & Solvell, L. (1967). Acta Med. Scand. 181, 335.CrossRefGoogle Scholar
International Commission for Radiation Proection (1960). Report of Committee 11 on Permissible Dose of Internal Radiation 1959. ICRP Publication no. 2. Oxford: Pergamon Press.Google Scholar
International Committee for Standardisation in Haematology (1978 a). Br. J. Haemat. 38, 291.CrossRefGoogle Scholar
International Committee for Standardisation in Haematology (1978 b). Br. J. Haemat. 38, 281.CrossRefGoogle Scholar
Layrisse, M., Cook, J. D., Martinez-Torres, C., Roche, M., Kuhn, I. N., Walker, R. B. & Finch, C. A. (1969). Blood 33, 430.Google Scholar
Layrisse, M., Martinez-Torres, C., Cook, J. D., Walker, R. & Finch, C. A. (1973). Blood 41, 333.CrossRefGoogle Scholar
MacPhail, A. P., Bothwell, T. H., Torrance, J. D., Derman, D. P., Bezwoda, W. R., Charlton, R. W. & Mayet, F. G. H. (1981). S. Afr. med. J. 59, 939.Google Scholar
Martinez-Torres, C. & Layrisse, M. (1973). In Clinics in Haematology, vol. 2, p. 339. [Callender, S. T., editor]. London, Philadelphia and Toronto: W. B. Saunders.Google Scholar
Mayet, F. G. H., Adams, E. B., Moodley, T., Kleber, E. E. & Cooper, S. K. (1972). S. Afr. med. J. 46, 1427.Google Scholar
Monsen, E. R., Hallberg, L., Layrisse, M., Hegsted, D. M., Cook, J. D., Mentz, W. & Finch, C. A. (1978). Am. J. clin. Nutr. 31, 134.Google Scholar
Paul, A. A. & Southgate, D. A. T. (1976). The Composition of Foods. Amsterdam: Elsevier North-Holland.Google Scholar
Rossander, L., Hallberg, L. & Bjorn-Rasmussen, E. (1979). Am. J. clin. Nutr. 32, 2484.Google Scholar
Sayers, M. H., Lynch, S. R., Charlton, R. W., Bothwell, T. H., Walker, R. B. & Mayet, F. (1974 a). Br. J. Nutr. 31, 367.CrossRefGoogle Scholar
Sayers, M. H., Lynch, S. R., Charlton, R. W., Bothwell, T. H., Walker, R. B. & Mayet, F. (1974 b). Br. J. Haemat. 28, 483.CrossRefGoogle Scholar
Sayers, M. H., Lynch, S. R., Jacobs, P., Charlton, R. W., Bothwell, T. H., Walker, R. B. & Mayet, F. (1973). Br. J. Haemat. 24, 209.CrossRefGoogle Scholar
Seikel, M. K. (1964). In Biochemistry of Phenolic Compounds, p. 35 [Harbourne, J. B., editor]. New York: Academic Press.Google Scholar
Singleton, V. L. & Rossi, J. A. (1965). In Methods for Analysis of Wines and Musts, p. 183 [Amerine, M. A. and Ough, C. C., editors]. New York: J. Wiley and Sons.Google Scholar
South African Bureau of Standards(1972). Code of Practice for Medical use of IonizingRadiations, Document 07.Google Scholar
Turnbull, A. L., Cleton, F. & Finch, C. A. (1962). J. clin. Invest. 41, 1898.CrossRefGoogle Scholar
van Soest, P. J. (1978). Am. J. clin. Nutr. 31, S12.Google Scholar