Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T13:31:06.739Z Has data issue: false hasContentIssue false

The effects of intravenous infusions of triglycerides on the composition of milk fat in the sow

Published online by Cambridge University Press:  09 March 2007

R. C. Witter
Affiliation:
Division of Agricultural Chemistry, School of Agricultural SciencesThe University of Leeds
J. Spincer
Affiliation:
Division of Agricultural Chemistry, School of Agricultural SciencesThe University of Leeds
J. A. F. Rook
Affiliation:
Division of Agricultural Chemistry, School of Agricultural SciencesThe University of Leeds
K. G. Towers
Affiliation:
Division of Agricultural Chemistry, School of Agricultural SciencesThe University of Leeds
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Emulsions with egg phosphatides of nine synthetic triglycerides (tributyrin, tricaprylin, tripelargonin, tricaprin, trilaurin, trimyristin, tripahitin, triisostearin, triolein) and of rapeseed oil and a proprietary emulsion of cottonseed oil were given as continuous infusions into the jugular vein of lactating sows. The effects of the infusions on the concentration and composition of blood plasma lipids and on the composition of milk fat were determined.

2. The infusions did not affect the concentrations in blood plasma of cholesterol, phospholipid or cholesterol esters, but there was a tendency for the concentration of plasma triglycerides to be increased which was most pronounced for the infusions of longer-chain triglycerides. The fatty acid composition of the plasma triglycerides was not altered by the infusion of tributyrin, except that there was an increase in the content of oleic and a decrease in that of linoleic acid. With other infusions the composition of the plasma triglycerides was altered towards that of the infused material and the effect was more marked for the longer-chain triglycerides, with the exception of triisostearin.

3. The changes in the composition of the milk fat reflected those in the composition of plasma triglycerides, with two exceptions. The infusion of tripalmitin was associated with an increase not only in the palmitic acid content of milk fat but also in the palmitoleic acid content. Also, the changes in the content in milk fat of eicosenoic acid and, more especially of erucic acid during the infusion of rapeseed oil were much less than the corresponding changes in the plasma triglycerides.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

Amenta, J. S. (1964). J. Lipid. Res. 5, 270.CrossRefGoogle Scholar
Beitz, D. C. & Davis, C. L. (1964). J. Dairy Sci. 47, 1213.CrossRefGoogle Scholar
Bickerstaffe, R. & Annison, E. F. (1968). Biochem. J. 108, 47 P.Google Scholar
Deuel, H. J. Jr, Hallman, L. & Leonard, A. (1940). J. Nutr. 20, 215.CrossRefGoogle Scholar
Farquhar, J. W., Insull, W. Jr, Rosen, P., Stoffel, W. & Ahrens, E. H. Jr (1959). Nutr. Rev. 17, no. 8, Part 2, suppl.Google Scholar
Freeman, C. P. & West, D. (1966). J. Lipid Res. 7, 324.CrossRefGoogle Scholar
Folch, J., Lees, M. & Stanley, G. H. S. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Hallberg, D. (1965). Acta physiol. scand. 65, 153.CrossRefGoogle Scholar
Hollett, C., Cole, W. E. & Meng, H. C. (1953). Fedn Proc. Fedn Am. Socs exp. Biol. 12, 70.Google Scholar
Kauste, O. (1958). Annls Paediat. Fenn. 4, suppl. no. 10.Google Scholar
Korn, E. D. (1955). J. biol. Chem. 215, 15.CrossRefGoogle Scholar
Linzell, J. L., Mepham, T. B., Annison, E. F. & West, C. E. (1969). Br. J. Nutr. 23, 319.CrossRefGoogle Scholar
Métais, P. & Bach, A. (1967). Cahiers Nutrition Diététique 2, 77.Google Scholar
Metcalfe, A. D. & Schmitz, A. A. (1961). Analayt. Chem. 33, 363.CrossRefGoogle Scholar
Rook, J. A. F. & Witter, R. C. (1968). Proc. Nutr. Soc. 27, 71.CrossRefGoogle Scholar
Scheig, R. & Klatskin, G. (1968). J. Am. Oil Chem. Soc. 45, 31.CrossRefGoogle Scholar
Schoefl, G. I. & French, J. E. (1968). Proc. R. Soc. B 169, 153.Google Scholar
Schuberth, O. & Wretlind, A. (1961). Acta chir. scand. suppl. no. 278.Google Scholar
Senior, J. R. (1964). J. Lipid Res. 5, 495.CrossRefGoogle Scholar
Singleton, W. S., Gray, M. S., Brown, M. L. & White, J. L. (1965). J. Am. Oil Chem. Soc. 42, 53.CrossRefGoogle Scholar
Spincer, J., Rook, J. A. F. & Towers, K. G. (1969). Biochem. J. 111, 727.CrossRefGoogle Scholar
Storry, J. E., Hall, A. J., Tuckley, N. & Millard, D. (1969). Br. J. Nutr. 23, 173.CrossRefGoogle Scholar
Storry, J. E. & Rook, J. A. F. (1964). Biochem. J. 91, 27 C.CrossRefGoogle Scholar
Storry, J. E., Rook, J. A. F. & Hall, A. J. (1967). Br. J. Nutr. 21, 425.CrossRefGoogle Scholar
Storry, J. E., Tuckley, B. & Hall, A. J. (1969). Br. J. Nutr. 23, 157.CrossRefGoogle Scholar
Thomasson, H. J. (1956). J. Nutr. 59, 343.CrossRefGoogle Scholar
Tove, S. B. & Mochrie, R. D. (1963). J. Dairy Sci. 46, 686.CrossRefGoogle Scholar
Wretlind, A. (1957). Acta physiol. scand. 40, 338.CrossRefGoogle Scholar
Wretlind, A. (1964). Acta chir. scand. suppl. no. 325.Google Scholar
Zeringue, H. J., Brown, M. L. & Singleton, W. S. (1964). J. Am. Oil Chem. Soc. 41, 688.CrossRefGoogle Scholar
Zurier, R. B., Campbell, R. G., Hashim, S. A. & Van Itallie, T. B. (1967). Am. J. Physiol. 212, 291.CrossRefGoogle Scholar