Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T03:24:25.439Z Has data issue: false hasContentIssue false

Effects of essential fatty acid deficiency during late gestation on brain N-acetylneuraminic acid metabolism and behaviour in the progeny

Published online by Cambridge University Press:  09 March 2007

Brian L. G. Morgan
Affiliation:
Institute of Human Nutrition, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, New York 10032, USA
John Oppenheimer
Affiliation:
Institute of Human Nutrition, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, New York 10032, USA
Myron Winick
Affiliation:
Institute of Human Nutrition, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, New York 10032, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Rat dams given a diet containing 100 g maize oil/kg for approximately 2 weeks before mating and during the first 14 d of gestation, were given the same diet or one containing 100 g hydrogenated coconut oil/kg (essential fatty acid (EFA)-deficient) in place of maize oil until parturition. After parturition the dams were given the same diets and all progeny were weaned to the maize oil diet at 21 d of age. Brain N-acetylneurammic acid (NeuNAc) content as well as neuraminidase (sialidase; (EC 3.2.1.18)) and cytidine monophosphate N-acetylneuraminic acid synthetase (CMP-NeuNAc synthetase) activities were measured at days, 7, 14, 21 and 168 in the progeny. Y-maze learning was measured at 168 d.

2. Brain weight was independent of dietary fat at all ages.

3. Lack of EFA in the maternal diet during gestation and lactation depressed ganglioside and glycoprotein NeuNAc levels and the activities of sialidase and CMP-NeuNAc synthetase.

4. Maternal dietary deprivation of EFA irreversibly impaired learning behaviour of the progeny. A relationship exists between early exposure to EFA deficiency and learning potential of the progeny.

Type
Papers of direct reference to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Bernhart, F. & Tomarelli, R. (1966). J. Nutr. 89, 495.Google Scholar
Bogoch, S. (1976). Adv. exptl Med. Biol. 71, 233.CrossRefGoogle Scholar
Bruning, J. L. & Kintz, B. L. (1968). In Computational Handbook of Statistics, p. 25. Glenview, Illinois: Scott Foresman.Google Scholar
Burton, K. (1956). Biochem. J. 62, 315.CrossRefGoogle Scholar
Caldwell, D. F. & Churchill, J. A. (1966). Psychol. Rep. 10, 99.CrossRefGoogle Scholar
Dunn, J. A. & Hogan, E. L. (1975). Pharmac. Biochem. Behav. 3, 605.Google Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Hseuh, A. M., Simonson, M., Chow, P. F. & Hanson, H. M. (1974). J. Nutr. 104, 37.Google Scholar
Irwin, L. N. & Samson, F. E. (1971). J. Neurochem. 18, 203.Google Scholar
Karpiak, S. E., Graf, L. & Rapport, M. M. (1976). Abstr. 6th A. Mtg Soc. Neurosci. 2, 443.Google Scholar
Klemperer, G. (1963). In Methods of Biochemical Analysis, vol. 1, p. 287 [Glick, D., editor]. New York: Interscience Publishers.Google Scholar
Lamptey, M. S. & Walker, B. L. (1978 a). J. Nutr. 108, 351.CrossRefGoogle Scholar
Lamptey, M. S. & Walker, B. L. (1978 b). J. Nutr. 108, 358.CrossRefGoogle Scholar
Ledeen, R. W. (1978). J. Supramol. Struct. 8, 1.CrossRefGoogle Scholar
Levitsky, D. A., Massaro, T. F. & Barnes, R. H. (1975). Fedn Am. Fedn Proc. Socs exp. Biol. 34, 1583.Google Scholar
Lowry, O. M., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 183, 265.CrossRefGoogle Scholar
Merat, A. & Dickerson, J. W. T. (1974). Biol. Neonate 25, 158.CrossRefGoogle Scholar
Miettinen, T. & Takk-Luukainen, I. T. (1959). Acta Chem. Scand. 13, 856.Google Scholar
Morgan, B. L. G. & Winick, M. (1980 a). J. Nutr. 110, 425.Google Scholar
Morgan, B. L. G. & Winick, M. (1980 b). J. Nutr. 110, 416.CrossRefGoogle Scholar
Paoletti, R. & Galli, C. (1972). In Lipids, Malnutrition and the Developing Brain, p. 121. Amsterdam: Associated Scientific Publishers.Google Scholar
Popjak, A. & Beekman, M. (1950). Biochem. J. 46, 547.Google Scholar
Rahmann, M., Rosner, M. & Breer, M. (1976). J. Theor. Biol. 57, 231.CrossRefGoogle Scholar
Roukema, P. A. & Heijlman, J. (1970). J. Neurochem. 17, 773.CrossRefGoogle Scholar
Roukema, P. A., Jan Den Eijenden, D. H., Heijlman, J. & Van Der Berg, (1964). FEBS Lett. 9, 267.CrossRefGoogle Scholar
Savaki, H. E. & Levis, G. M. (1977). Pharmacol Biochem Behav. 7, 7.CrossRefGoogle Scholar
Schengrund, C. L. & Nelson, J. T. (1975). Biochem. biophys. Res. Commun. 63, 217.CrossRefGoogle Scholar
Schengrund, C. L. & Rosenberg, A. (1970). J. biol. Chem. 245, 6196.Google Scholar
Schengrund, C. L. & Rosenberg, A. (1971). Biochemistry 10, 2424.Google Scholar
Suzuki, K. (1964). Life Sci. 3, 1227.CrossRefGoogle Scholar
Suzuki, K. (1967). J. Neurochem. 14, 917.CrossRefGoogle Scholar
Svennerholm, L. (1957). Biochim. biophys. Acta 24, 604.Google Scholar
Svennerholm, L., Alling, C., Bruce, A., Karlson, I. & Sapia, O. (1972). In Lipids, Malnutrition and the Developing Brain, p. 141. Amsterdam: Associated Scientific Publishers.Google Scholar
Weseman, W., Henkel, R. & Marx, R. (1971). Biochem. Pharmac. 20, 1961.CrossRefGoogle Scholar
Winick, M. (1976). In Malnutrition and Brain Development, p. 63. New York, London and Toronto: Oxford University Press.Google Scholar