Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T03:21:17.388Z Has data issue: false hasContentIssue false

Effects of environmental temperature on heat production, energy retention, protein and fat gain in early weaned piglets

Published online by Cambridge University Press:  09 March 2007

J. Le Dividich
Affiliation:
Institut National de la Recherche Agronomique, Station de Recherches sur l'Elevage des Porcs, Centre de Rennes-St Gilles, 35590 L' Hermitage and Laboratoire d'Etudes du Metabolisme Energetique, 63110 Beaumont, France
M. Vermorel
Affiliation:
Institut National de la Recherche Agronomique, Station de Recherches sur l'Elevage des Porcs, Centre de Rennes-St Gilles, 35590 L' Hermitage and Laboratoire d'Etudes du Metabolisme Energetique, 63110 Beaumont, France
J. Noblet
Affiliation:
Institut National de la Recherche Agronomique, Station de Recherches sur l'Elevage des Porcs, Centre de Rennes-St Gilles, 35590 L' Hermitage and Laboratoire d'Etudes du Metabolisme Energetique, 63110 Beaumont, France
J. C. Bouvier
Affiliation:
Institut National de la Recherche Agronomique, Station de Recherches sur l'Elevage des Porcs, Centre de Rennes-St Gilles, 35590 L' Hermitage and Laboratoire d'Etudes du Metabolisme Energetique, 63110 Beaumont, France
A. Aumaitre
Affiliation:
Institut National de la Recherche Agronomique, Station de Recherches sur l'Elevage des Porcs, Centre de Rennes-St Gilles, 35590 L' Hermitage and Laboratoire d'Etudes du Metabolisme Energetique, 63110 Beaumont, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Six experiments each involving two groups of six piglets, were designed to study the influence of environmental temperature on heat production, energy retention and protein and fat gain in early weaned piglets. Immediately after weaning, at a mean age of 25 d, the animals were raised in two open circuit respiratory chambers. Each chamber was equipped with a totally wired cage. The piglets were paired-fed and maintained at environmental temperatures of 20, 24 or 28°. Four replicates were used for each temperature. Metabolizable energy, heat production and nitrogen balance were measured during two consecutive periods (A and B), each of 6 d duration.

2. Heat production was higher at 20° than at 24 and 28° during periods A and B. Energy retention was negative during period A, it was positive during period B and increased with temperature.

3. Protein deposition was always positive and independent of environmental temperature. The net efficiency of protein utilization was 0.77.

4. Body fat was mobilized during period A at a higher rate at 20° than 28°. During period B, fat gain increased with increase in temperature.

5. The calculated ME requirement for maintenance amounted to 411 kJ/kg body-weight0.75 per d at 28°.

6. The critical temperature of early weaned piglets raised in intensive modern housing and fed at about 90% of the ad lib. intake is close to 28° during the first 12 d after weaning.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Baur, L. S. & Filler, L. J. Lr (1959). J. Nutr. 69. 128.CrossRefGoogle Scholar
Brouwer, E. (1965). Publs Eur. Ass. Anim. Prod. no. 11, p. 441.Google Scholar
Brown, D. E., Hacker, R. R. & King, G. J. (1976). Can. J. Anim. Sci. 56, 365.CrossRefGoogle Scholar
Burlacu, G., Baia, G., Dumitra Ioniala, , Doina Moisa, , Tascenco, V., Uisan, I. & Stoica, I. (1973). J. agric.Sci., Camb. 81, 295.CrossRefGoogle Scholar
Cairnie, A. B. & Pullar, J. D. (1957). J. Physiol., Lond. 139, 15P.Google Scholar
Close, W. H. & Mount, L. E. (1976). Publs Eur. Ass. Anim. Prod. no. 19, p. 176.Google Scholar
Close, W. H., Mount, L. E. & Start, I. B. (1971). Anim. Prod. 13, 285.Google Scholar
Close, W. H. & Stanier, M. W. (1979). Paper presented at the 8th Symposium on Energy Metabolism in Farm Animals. Cambridge.Google Scholar
Cochran, W. G. & Cox, G. M. (1966). Experimental Designs, 2nd ed.New York, London and Sydney: Wiley.Google Scholar
De Goey, L. (1973). Evaluation of the energy value of feed ingredients for young swine. PhD thesis, Iowa State University.Google Scholar
Diggs, B. G., Becker, D. E., Jensen, A. H. & McCall, J. T. (1965). J. anim. Sci. 24,555.CrossRefGoogle Scholar
Entringer, R. P., Plumlee, M. P., Conrad, J. H., Cline, T. R. & Wolfe, S. (1975). J. Anim. Sci. 40, 486.CrossRefGoogle Scholar
Fraser, D. (1978). Anim. Behav. 26, 22.CrossRefGoogle Scholar
Fuller, M. F. (1965). Br. J. Nutr. 19, 531.CrossRefGoogle Scholar
Fuller, M. F. & Boyne, A. W. (1971). Br. J. Nutr. 25, 259.CrossRefGoogle Scholar
Fuller, M. F. & Boyne, A. W. (1972). Br. J. Nutr. 28, 373.CrossRefGoogle Scholar
Hacker, R. R., Stefanovic, M. P. & Batra, T. R. (1973). Can. J. Anim. Sci. 37,739.CrossRefGoogle Scholar
Holmes, C. W. (1973). Anim. Prod. 16, 117.Google Scholar
Holmes, C. W. & Close, W. H. (1977). In Nutrition and the Climatic Environment, p. 51 [Haresign, W., Swin, H. and Lewis, D., editors]. London: Buttenvorths.Google Scholar
Jordan, J. W. (1973). Studies on the energy metabolism of the early weaned pig. PhD thesis, The Queen's University of Belfast.Google Scholar
Jordan, J. W. (1974). Publs Eur. Ass. Anim. Prod. no. 14, p. 189.Google Scholar
Kornegay, E. T., Tinsley, S. E. & Bryant, K. L. (1979). J. Anim. Sci. 4, 182.Google Scholar
Kovacs, F. & Rafai, P. (1973). Magy Ao. Lapja 4 182.Google Scholar
Le Dividich, J. & Aumaitre, A. (1978). Livestock Prod. Sci. 5, 71.CrossRefGoogle Scholar
Le Dividich, J., Aumaitre, A. & Berbigier, P. (1977). Journées de la Recherche Porcine en France, p. 297. Paris: I.N.R.A.-I.T.P.Google Scholar
Leibbrandt, V. D., Ewan, R. C., Speer, V. C. & Zimmerman, D. R. (1975 a). J. Anim. Sci. 40, 1077.CrossRefGoogle Scholar
Leibbrandt, V. D., Ewan, R. C., Speer, V. C. & Zimmem, D. R. (1975 b). J. Anim. Sci. 40, 1070.CrossRefGoogle Scholar
Mount, L. E. (1960). J. agric. Sci.. Camb. 55, 101.CrossRefGoogle Scholar
Mount, L. E. (1968). The climatic Physiology of the Pig. London: Arnold.Google Scholar
Nijkamp, H. J. (1961). Publs Eur. Ass. Anim. Prod. no. 10, p. 86.Google Scholar
Palmer, N. C. & Hulland, T. J. (1965). Can. vet. J. 16, 310.Google Scholar
Papp, J. (1976). Paper presented at the 27th A. Mtgn Eur. Ass. Anim. Prod., Zurich.Google Scholar
Stombaugh, D. P. & Roller, W. L. (1976). A.S.A.E. paper no. 76–4060.Google Scholar
Studzinski, T. (1972). J. Physiol., Lond. 224, 305.CrossRefGoogle Scholar
Sugahara, M., Backer, D. H., Harmon, B. G. & Jensen, A. H. (1970). J. Anim. Sci. 31, 59.CrossRefGoogle Scholar
Vermorei, M., Bouvier, J. C., Bonnet, M. & Fauconneau, G. (1973). Ann. Biol. Anim. Biochem. Biophys. 13,659.CrossRefGoogle Scholar
Verstegen, M. W. A. (1971). Meded. Lundbhogesch., Wugeningen, 71.Google Scholar
Verstegen, M. W. A., Close, W. H., Start, L. B. & Mount, L. E. (1973). Br. J. Nutr. 30, 21.CrossRefGoogle Scholar
Whittemore, C. T., Aumaitre, A. & Williams, I. H. (1978). J. agric. Sci., Camb. 91, 681.CrossRefGoogle Scholar