Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T09:37:54.176Z Has data issue: false hasContentIssue false

Effects of diets containing casein and rapeseed on enzyme secretion from the exocrine pancreas in the pig

Published online by Cambridge University Press:  09 March 2007

P. Valette
Affiliation:
Laboratoire d'Ecologie et de Physiologie du Système Digestif, INRA-CRJ, 78352 Jouy en Josas cédex, France
H. Malouin
Affiliation:
Departement de nutrition humaine et de consommation FSAA, Université Laval, Québec, Canada G1K 7P4
T. Corring
Affiliation:
Laboratoire d'Ecologie et de Physiologie du Système Digestif, INRA-CRJ, 78352 Jouy en Josas cédex, France
L. Savoie
Affiliation:
Departement de nutrition humaine et de consommation FSAA, Université Laval, Québec, Canada G1K 7P4
A. M. Gueugneau
Affiliation:
Laboratoire d'Ecologie et de Physiologie du Système Digestif, INRA-CRJ, 78352 Jouy en Josas cédex, France
S. Berot
Affiliation:
Laboratoire d'Ecologie et de Physiologie du Système Digestif, INRA-CRJ, 78352 Jouy en Josas cédex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of dietary protein on enzyme activity of pancreatic juice was studied in ten growing, castrated, Large White male pigs. Animals, fitted with permanent cannulas in the pancreatic duct and in the duodenum, were divided into two groups receiving either casein or rapeseed concentrate as a protein source. After a 15 d adaptation period to the experimental diet, the volume of pancreatic secretion was significantly higher, whereas the protein concentration was lower in the casein group compared with the rapeseed group. No statistical difference was observed in the daily protein output between groups. Total secreted activities of carboxypeptidase A (EC 3.4.17.1), and elastase (EC 3.4.21.36) were higher in the casein group during the nocturnal period, whereas total activities of trypsin (EC 3.4.21.4), chymotrypsin (EC 3.4.21.1), carboxypeptidase B (EC 3.4.17.2) and amylase (EC 3.2.1.1) in pancreatic secretions during the post-prandial periods were increased by the ingestion of the rapeseed diet. It is concluded that the pancreatic enzyme secretion is sensitive to the nature of the protein ingested.

Type
Metabolism Effects of Diet
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Ben Abdeljlil, A. & Desnuelle, P. (1964). Sur l'adaptation des enzymes exocrines du pancréas à la composition du régime. (The adaptation of the exocrine enzymes of the pancreas to the composition of the diet.) Biochimica et Biophysica Acta 81 136 149.Google Scholar
Berot, S. & Briffaud, J. (1983). Parameters for obtaining concentrates from rapeseed and sunflower meal. Qualitas Plantarum: Plant Foods for Human Nutrition 33, 237242.CrossRefGoogle Scholar
Bucko, A., Kopec, Z., Oveocka, M. & Grunt, J. (1982). Adaptability of pancreatic enzymes activity to various food nutritive values in man. Influence of high protein diet. Die Nährung 26, 5964.CrossRefGoogle ScholarPubMed
Corring, T. (1979). Sécrétion du pancréas exocrine et régulations nutritionelles. (Pancreatic exocrine secretion and dietary regulation.) Médecine et Nutrition XI, 2530.Google Scholar
Corring, T. (1980). The adaptation of digestive enzymes to the diet: its physiological significance. Reproduction, Nutrition, Développement 20 1217 1235.Google Scholar
Corring, T., Aumaître, A. & Rerat, A. (1972). Fistulation permanente du pancréas exocrine chez le porc. Application: réponse de la sécrétion pancréatique au repas. (Permanent pancreatic fistulation in the pig. Secretory response to meal ingestion.) Annales de Biologie Animale, Biochimie et Biophysique 12, 109124.CrossRefGoogle Scholar
Corring, T. & Saucier, R. (1972). Sécrétion pancréatique sur porc fistulé: adaptation à la teneur en protéines du régime. (Pancreatic secretion of the fistulated pig. Adaptation to protein content of the diet.) Annales de Biologie Animale, Biochimie et Biophysique 12, 233241.CrossRefGoogle Scholar
Folk, J. E., Piez, K. A., Carroll, W. R. & Gladner, J. A. (1960). Carboxypeptidase B. VI. Purification and characterization of the porcine enzyme. Journal of Biological Chemistry 235, 22722277.CrossRefGoogle Scholar
Gertler, A. & Hofmann, T. H. (1970). Acetyl-l-alanyl-l-alanine methyl ester: a new highly specific elastase substrate. Canadian Journal of Biochemistry 48, 384386.CrossRefGoogle Scholar
Giorgi, D., Renaud, W., Bernard, J. P. & Dagorn, J. C. (1985). Regulation of proteolytic enzyme activities and mRNA concentrations in rat pancreas by food content. Biochemical and Biophysical Research Communications 127, 937942.CrossRefGoogle ScholarPubMed
Green, G. M. & Nasset, E. S. (1983). Role of dietary protein in rat pancreatic enzyme secretory response to a meal. Journal of Nutrition 113, 22452252.CrossRefGoogle ScholarPubMed
Johnson, A., Hurwitz, R. & Kretchmer, N. (1977). Adaptation of rat pancreatic amylase and chymotrypsinogen to changes in diet. Journal of Nutrition 107, 8796.CrossRefGoogle ScholarPubMed
Juste, C., Corring, T. & Le Coz, Y. (1983). Bile restitution procedure for studying bile secretion in fistulated pigs. Laboratory Animal Sciences 33, 199202.Google ScholarPubMed
Keim, V. (1986). Rapid adaptation of pancreatic enzyme secretion in the conscious rat. II. Effects of fasting and dietary modulation. Annals of Nutrition and Metabolism 30, 113119.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Malagelada, J. R. (1980). Pathophysiological responses to meals in the Zollinger-Ellison syndrome. 2. Gastric emptying and its effect on duodenal function. Gut 21, 98104.CrossRefGoogle ScholarPubMed
Metais, P. & Bieth, J. (1968). Détermination de l'α-amylase par une microtechnique. (Determination of α-amylase using a microtechnique.) Annales de Biologie Clinique 26, 133142.Google Scholar
Mourot, J. & Corring, T. (1979). Adaptation of the lipase-colipase system to dietary lipid content in pig pancreatic tissue. Annales de Biologie Animale, Biochimie et Biophysique 19, 119124.CrossRefGoogle Scholar
O'Hare, W. T., Curry, M. C. & Allen, J. C. (1984). Effect of buffering capacity on a commonly used assay of protein digestibility. Journal of Food Science 49, 498499.CrossRefGoogle Scholar
Partridge, I. G., Low, A. G., Sambrook, I. E. & Corring, T. (1982). The influence of diet on the exocrine pancreatic secretion of growing pigs. British Journal of Nutrition 48, 137145.CrossRefGoogle ScholarPubMed
Rathelot, J., Julien, R., Canioni, P., Coeroll, C. & Sarda, L. (1975). Studies on the effect on bile salt and colipase on enzymatic lipolysis. Improved method for the determination of pancreatic lipase and colipase. Biochimie 57 11171122.CrossRefGoogle ScholarPubMed
Reboud, J. P., Ben Abdeljlil, A. & Desnuelle, P. (1962). Variations de la teneur en enzymes du pancréas de rat en fonction de la composition des régimes. (Variations of the enzymic content of rat pancreas as a function of the composition of the diet.) Biochimica et Biophysica Acta 58, 326337.CrossRefGoogle Scholar
Richter, B. D. & Schneeman, B. O. (1987). Pancreatic response to long-term feeding of soy protein isolate, casein or egg-white in rats. Journal of Nutrition 117, 247252.CrossRefGoogle ScholarPubMed
Sabb, J. E., Godfrey, P. M. & Brannon, P. M. (1986). Adaptive response of rat pancreatic lipase to dietary fat: effects of amount and type of fat. Journal of Nutrition 116, 892899.CrossRefGoogle ScholarPubMed
Savoie, L., Galibois, I., Parent, G. & Charbonneau, R. (1988). Sequential release of amino acids and peptides during in vitro digestion of casein and rapeseed proteins. Nutrition Research 8, 13191326.CrossRefGoogle Scholar
Schneeman, B. O., Chang, I., Smith, L. B. & Lyman, R. L. (1977). Effect of dietary amino acids, casein, and soybean trypsin inhibitor on pancreatic protein secretion in rats. Journal of Nutrition 107, 281288.CrossRefGoogle ScholarPubMed
Snook, J. T. (1969). Factors in whole egg protein influencing dietary induction of increases in enzyme and RNA levels in rat pancreas. Journal of Nutrition 97 286 294.Google Scholar
Snook, J. T. & Meyer, J. H. (1964). Response of digestive enzymes to dietary protein. Journal of Nutrition 82 409 414.Google Scholar
Steel, R. C. D. & Torrie, J. H. (1980). Principles and Procedures of Statistics, 2nd ed. New York: McGraw-Hill.Google Scholar
Struthers, B. J. & McDonald, J. R. (1983). Comparative ìnhìbìtìon of trypsins from several species by soybean trypsin inhibitors. Journal of Nutrition 113, 800804.CrossRefGoogle ScholarPubMed
Temler, R. S., Dormond, C. A., Simon, E., Morel, B. & Mettraux, C. (1984). Response of rat pancreatic proteases to dietary proteins, their hydrolysates and soybean trypsin inhibitor. Journal of Nutrition 114, 270278.CrossRefGoogle ScholarPubMed
Yamasaki, M., Brown, J. R., Cox, D. I., Greenshields, R. N., Wade, R. D. & Neurath, H. (1963). Procarboxypeptidase A-S6. Further studies of its isolation and properties. Biochemistry 2, 859866.CrossRefGoogle Scholar
Zebrowska, T., Low, A. G. & Zebrowska, H. (1983). Studies on gastric digestion of protein and carbohydrate, gastric secretion and exocrine pancreatic secretion in the growing pig. British Journal of Nutrition 49, 401410.CrossRefGoogle ScholarPubMed