Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T16:33:48.319Z Has data issue: false hasContentIssue false

Effects of dietary oxysterols on coronary arteries in hyperlipidaemic hamsters

Published online by Cambridge University Press:  09 March 2007

Alexandra Meynier
Affiliation:
INRA, Unité de Nutrition Lipidique, BP 86510, 17 rue Sully, 21065 Dijon, France
Jeanine Lherminier
Affiliation:
INRA, Service Commun de Microscopie, BP 86510, Bretenière, 21065 Dijon, France
Joelle Demaison-Meloche
Affiliation:
INRA, Unité de Nutrition Lipidique, BP 86510, 17 rue Sully, 21065 Dijon, France
Christian Ginies
Affiliation:
INRA, Laboratoire de Recherche sur les Arômes, BP 86510, 17 rue Sully, 21065 Dijon, France
Andre Grandgirard
Affiliation:
INRA, Unité de Nutrition Lipidique, BP 86510, 17 rue Sully, 21065 Dijon, France
Luc Demaison*
Affiliation:
INRA, Unité de Nutrition Lipidique, BP 86510, 17 rue Sully, 21065 Dijon, France
*
*Corresponding author: Dr Luc Demaison, fax +33 380 63 32 23, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this study was to evaluate the effect of dietary oxysterols on coronary atherosclerosis and vasospasm. Golden Syrian hamsters were fed three diets with different lipid contents for 3 months: (1) a normolipidaemic diet containing 25 g corn oil–fish oil (4:1, w/w)/kg (group Low L); (2) a hyperlipidaemic diet composed of the normolipidaemic diet supplemented with 150 g lard+30 g cholesterol/kg (group High L); (3) a third diet, similar to the hyperlipidaemic diet, in which 4 g cholesterol/kg was replaced by a mixture of oxysterols (group High L+OS). The oxysterol mixture contained (g/kg): 5,6α-epoxycholesterol 211, 5,6β-epoxycholesterol 179, 7α-hydroxycholesterol 67, 7β-hydroxycholesterol (7βOH) 185, 7-ketocholesterol (7 K) 235; and trace amounts of 7-hydroperoxycholesterols (approximately 30 g/kg). Atherosclerosis was evaluated by measuring myocardial Ca, oxysterols and acyl-CoA cholesterol acyl transferase (ACAT) activity; furthermore, coronary reactivity to sodium nitroprusside (5×10-6 m) was measured and the morphology of coronary arteries was visualized by transmission electron microscopy. Coronary spasm was determined by evaluating reactivity to serotonin (5×10-6 m). Feeding the high-lipid diet (group High L) increased the plasma level of 7βOH, 7 K and cholestanetriol. The presence of oxysterols in the diet (group High L+OS) further increased the concentrations of 7βOH and 7 K in the plasma. However, as evidenced by myocardial Ca, ACAT activity and coronary reactivity to sodium nitroprusside, severe atherosclerosis did not develop during the 3-month diet. 7 K was increased in myocardial lipids of groups High L and High L+OS. Electron microscopy did not show the development of atherosclerosis in group High L, whereas vascular wall thickening, endothelial damage and smooth muscle cell proliferation and migration occurred when oxysterols were present in the food. Serotonin (5×10-6 m) induced exacerbated coronary vasoconstriction in group High L that was completely reversed by dietary oxysterols. In conclusion, dietary oxysterols exhibit anti-spasmodic properties, but they cannot be used as agents against excess dietary lipid-induced coronary spasm because of their atherogenic properties.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2002

References

Anderson, KE, Kok, E & Javitt, NB (1972) Bile acid synthesis in man: metabolism of 7-hydroxycholesterol-14C and 26-hydroxycholesterol-3H. Journal of Clinical Investigation 51, 112117.CrossRefGoogle Scholar
Anitschkow, N (1913) Über die Veränderungen der Kaninchenaorta bei experimenteller Cholesterin-steatose (About changes in canine aorta during cholesterol-induced steatosis). Beiträge zur Pathologischen Anatomie und zur Allgemeinen Pathologie 56, 379404.Google Scholar
Arakami, Y, Kobayashi, T, Imai, Y, Kikuchi, S, Matsukawa, T & Kanazawa, K (1967) Biological studies of cholestane-3β,5α,6β-triol and its derivatives. Part 1. Hypocholesterolemic effects in rabbits, chickens and rats on atherogenic diet. Journal of Atherosclerosis Research 7, 653669.Google Scholar
Asami, Y, Yamagishi, I, Akiyoshi, K, Tomoike, H, Tsuchida, K & Higuchi, S (1999) Inhibitory effect of TS-962 on the formation of early atherosclerotic lesions in high fat-fed hyperlipidaemic hamsters. Atherosclerosis 146, 237242.CrossRefGoogle Scholar
Axelson, M & Larsson, O (1995) Low density lipoprotein (LDL) cholesterol is converted to 27-hydroxycholesterol in human fibroblasts – Evidence that 27-hydroxycholesterol can be an important intracellular mediator between LDL and the suppression of cholesterol production. Journal of Biological Chemistry 270, 1510215110.CrossRefGoogle ScholarPubMed
Bascoul, J, Domergue, N, Mourot, J, Debry, G & Crastes de Paulet, A (1986) Intestinal absorption and fecal excretion of 5,6 α-epoxy-5 α-cholesta-3 β-ol by the male Wistar rat. Lipids 21, 744747.CrossRefGoogle ScholarPubMed
Bjorkhem, I, Henriksson-Freyschuss, A, Breuer, O, Diczfalusy, U, Berglund, L & Henriksson, P (1991) The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arteriosclerosis and Thrombosis 11, 1522.CrossRefGoogle ScholarPubMed
Boissonneault, GA, Hennig, B & Ouyang, CM (1991 a) Oxysterols, cholesterol biosynthesis, and vascular endothelial cell monolayer barrier function. Proceedings of the Society for Experimental Biology and Medicine 196, 338343.CrossRefGoogle ScholarPubMed
Boissonneault, GA, Hennig, B, Wang, Y, Ouyang, CM, Krahulik, K, Cunnup, L & Oeltgen, PR (1991 b) Effect of oxysterol-enriched low-density lipoprotein on endothelial barrier function in culture – low-density lipoproteins. Annals of Nutrition and Metabolism 35, 226232.CrossRefGoogle ScholarPubMed
Breuer, O & Bjorkhem, I (1995) Use of an 18-O(2) inhalation technique and mass isotopomer distribution analysis to study oxygenation of cholesterol in rat - Evidence for in vivo formation of 7-oxo, 7 β-hydroxy-, 24-hydroxy-, and 25-hydroxycholesterol. Journal of Biological Chemistry 270, 2027820284.CrossRefGoogle Scholar
Breuer, O (1995) Identification and quantification of cholest-5-ene-3 β,4 β diol in rat liver and human plasma. Journal of Lipid Research 36, 22752281.CrossRefGoogle Scholar
Breuer, O, Dzeletovic, S, Lund, E & Diczfalusy, U (1996) The oxysterols cholest-5-ene-3β,4 α-diol, cholest-5-ene-3 β,4 β-diol and cholestane-3 β,5 α,6 α-triol are formed during in vitro oxidation of low density lipoprotein, and are present in human atherosclerotic plaque. Biochimica et Biophysica Acta 1302, 145152.CrossRefGoogle Scholar
Brown, JL & Johnston, JM (1962) Radioassay of lipid components separated by thin-layer chromatography. Journal of Lipid Research 4, 480481.CrossRefGoogle Scholar
Brown, AJ & Jessup, W (1999) Oxysterols and atherosclerosis. Atherosclerosis 142, 128.CrossRefGoogle ScholarPubMed
Cader, AA, Steinberg, FM, Mazzone, T & Chait, A (1997) Mechanisms of enhanced macrophage apoE secretion by oxidized LDL. Journal of Lipid Research 38, 981991.CrossRefGoogle ScholarPubMed
Campbell, JH & Campbell, GR (1997) The cell biology of atherosclerosis – new developments. Australian and New-Zealand Journal of Medicine 27, 497500.CrossRefGoogle ScholarPubMed
Canavy, I, Dutrillat, C, Garcia, E, Bonnet, JL & Bory, M (1999) Etude prospective sur le mécanisme de l'infarctus du myocarde sans sténose coronaire significative (Prospective study about the mechanism of myocardial infarction without significant coronary stenosis). Archives des Maladies du Cœur et des Vaisseaux 92, 225233.Google Scholar
Caputo, M, Nicolini, F, Franciosi, G & Gallotti, R (1999) Coronary artery spasm after coronary artery bypass grafting. European Journal of Cardio-Thoracic Surgery 15, 545548.CrossRefGoogle ScholarPubMed
Chien, JT, Wang, HC & Chen, BH (1998) Kinetic model of the cholesterol oxidation during heating. Journal of Agriculture and Food Chemistry 46, 25722577.CrossRefGoogle Scholar
Clare, K, Hardwick, SJ, Carpenter, KLH, Weeratunge, N & Mitchinson, MJ (1995) Toxicity of oxysterols to human monocyte-macrophages. Atherosclerosis 118, 6775.CrossRefGoogle ScholarPubMed
Colles, SM, Irwin, KC & Chisolm, GM (1996) Roles of multiple oxidized LDL lipids in cellular injury: Dominance of 7 β-hydroperoxycholesterol. Journal of Lipid Research 37, 20182028.CrossRefGoogle ScholarPubMed
Dagnelie, P (1975) Théories et méthodes statistiques (Statistical Theories and Methods). Gembloux: Presse Agronomique de Gembloux.Google Scholar
Deckert, V, Persegol, L, Viens, L, Lizard, G, Athias, A, Lallemant, C, Gambert, P & Lagrost, L (1997) Inhibitors of arterial relaxations among components of human oxidized low-density lipoproteins: cholesterol derivatives oxidized in position 7 are potent inhibitors of endothelium-dependant vasodilatation. Circulation 95, 723731.CrossRefGoogle Scholar
Dyer, RG, Stewart, MW, Mitcheson, J, George, K, Alberti, MM & Laker, MF (1997) 7-Ketocholesterol, a specific indicator of lipoprotein oxidation, and malondialdehyde in non-insulin dependent diabetes and peripheral vascular disease. Clinica Chimica Acta 260, 113.CrossRefGoogle ScholarPubMed
Folch, J, Lees, M & Sloane-Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Fuertes, J, Gallego, P, Peinado, R & Merino, JL (1998) Implantable cardioverter defibrillator as therapeutic option for sudden cardiac death secondary to severe coronary vasospasm [see comments]. Comment in: International Journal of Cardiology 65, 209–210. International Journal of Cardiology 63, 181183.CrossRefGoogle Scholar
Gillies, PJ, Rathgeb, KA, Perri, MA & Robinson, CS (1986) Regulation of acyl-CoA:cholesterol acyltransferase activity in normal and atherosclerotic rabbit aortas: role of a cholesterol substrate pool. Experiments in Molecular Pathology 44, 329339.CrossRefGoogle ScholarPubMed
Goldstein, DR, Dobbs, T, Krull, B & Plumb, VJ (1998) Clenbuterol and anabolic steroids: a previously unreported cause of myocardial infarction with normal coronary arteriograms. South Medical Journal 91, 780784.CrossRefGoogle ScholarPubMed
Hein, TW & Kuo, L (1998) LDLs impair vasomotor function of the coronary microcirculation: role of superoxide anions. Circulation Research 83, 404414.CrossRefGoogle ScholarPubMed
Heistad, DD, Armstrong, ML, Marcus, ML, Piegors, DJ & Mark, AL (1984) Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circulation Research 54, 711718.CrossRefGoogle ScholarPubMed
Henry, PD & Yokoyama, M (1980) Supersensitivity of atherosclerotic rabbit aorta to ergonovine. Mediation by a serotonergic mechanism. Journal of Clinical Investigation 66, 306313.CrossRefGoogle ScholarPubMed
Higley, NA, Beery, JT, Taylor, SL, Porter, JW, Dziuba, JA & Lalich, JJ (1986) Comparative atherogenic effects of cholesterol and cholesterol oxides. Atherosclerosis 62, 91104.CrossRefGoogle ScholarPubMed
Hodis, HN, Chauhan, A, Hashimoto, S, Crawford, DW & Sevanian, A (1992) Probucol reduces plasma and aortic wall oxysterol levels in cholesterol fed rabbits independently of its plasma cholesterol lowering effect. Atherosclerosis 96, 125134.CrossRefGoogle ScholarPubMed
Hughes, H, Mathews, B, Lenz, ML & Guyton, JR (1994) Cytotoxicity of oxidized LDL to porcine aortic smooth muscle cells is associated with the oxysterols 7-ketocholesterol and 7-hydroxycholesterol. Arteriosclerosis and Thrombosis 14, 11771185.CrossRefGoogle ScholarPubMed
Imai, H, Werthessen, NT, Taylor, CB & Lee, KT (1976) Angiotoxicity and arteriosclerosis due to contaminants of USP-grade cholesterol. Archives of Pathology and Laboratory Medicine 100, 565572.Google ScholarPubMed
Inouye, M, Hashimoto, H, Abo, K, Tsuzuki, D, Moi, T & Sumino, K (1998) The effect of probucol on oxidized cholesterol disposition in hyperlipidaemic patients. Journal of International Medical Research 26, 233238.CrossRefGoogle ScholarPubMed
Israel, DH & Gorlin, R (1992) Fish oils in the prevention of atherosclerosis. Journal of the American College of Cardiology 19, 174185.CrossRefGoogle ScholarPubMed
Jacobson, MS (1987) Cholesterol oxides in Indian ghee: possible cause of unexplained high risk of atherosclerosis in Indian immigrant populations. Lancet 2, 656658.CrossRefGoogle ScholarPubMed
Jacobson, MS, Price, MG, Shamoo, AE & Heald, FP (1985) Atherogenesis in White Carneau pigeons effects of low-level cholestane-triol feeding. Atherosclerosis 57, 209217.CrossRefGoogle ScholarPubMed
Jeremias, A, Kutscher, S, Haude, M, Heinen, D, Baumgart, D, Herrmann, J & Erbel, R (1999) Chest pain after coronary interventional procedures. Incidence and pathophysiology. Herz 24, 126131.Google ScholarPubMed
Kugiyama, K, Ohgushi, M, Motoyama, T, Sugiyama, S, Soejima, H, Matsumura, T, Yoshimura, M, Ogawa, H & Yasue, H (1999) Enhancement of constrictor response of spastic coronary arteries to acetylcholine but not to phenylephrine in patients with coronary spastic angina. Journal of Cardiovascular Pharmacology 33, 414419.CrossRefGoogle Scholar
Lai, SM, Gray, JI & Zabik, ME (1995) Evaluation of solid phase extraction and gas chromatography for determination of cholesterol oxidation products in spray-dried whole egg. Journal of Agriculture and Food Chemistry 43, 11221126.CrossRefGoogle Scholar
Linseisen, J & Wolfram, G (1998) Absorption of cholesterol oxidation products from ordinary foodstuff in humans. Annals of Nutrition and Metabolism 42, 221230.CrossRefGoogle ScholarPubMed
Lip, GY, Ray, KK & Shiu, MF (1998) Coronary spasm in acute myocardial infarction. Heart 80, 197199.CrossRefGoogle ScholarPubMed
Lizard, G, Deckert, V, Dubrez, L, Moisant, M, Gambert, P & Lagrost, L (1996) Induction of apoptosis in endothelial cells treated with cholesterol oxides. American Journal of Pathology 148, 16251638.Google ScholarPubMed
Lowe, MD, Stone, DL & Grace, AA (1998) Sotalol associated polymorphic ventricular tachycardia and coronary spasm. Heart 79, 518520.CrossRefGoogle ScholarPubMed
Lyons, MA & Brown, AJ (2001) Metabolism of an oxysterol, 7-ketocholesterol, by sterol 27-hydroxylase in HepG2 cells. Lipids 36, 701711.CrossRefGoogle ScholarPubMed
Lyons, MA, Samman, S, Gatto, L & Brown, AJ (1999) Rapid hepatic metabolism of 7-ketocholesterol in vivo: implications for dietary oxysterols. Journal of Lipid Research 40, 18461857.CrossRefGoogle ScholarPubMed
Lutjohann, D, Breuer, O, Ahlborg, G, Nennesmo, I, Siden, A, Diczfalusy, U & Bjorkhem, I (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proceedings of the National Academy of Sciences, USA 93, 97999804.CrossRefGoogle ScholarPubMed
Maerker, G, Nungesser, EH & Bunick, FJ (1988) Reaction of cholesterol 5,6-epoxides with simulated gastric juice. Journal of the American Oil Chemists' Society 23, 761765.Google ScholarPubMed
Mahfouz, MM, Kawano, H & Kummerow, FA (1997) Effect of cholesterol-rich diets with and without added vitamins E and C on the severity of atherosclerosis in rabbits. American Journal of Clinical Nutrition 66, 12401249.CrossRefGoogle Scholar
Malavasi, B, Rasetti, MF, Roma, P, Fogliatto, R, Allevi, P, Catapano, AL & Galli, G (1992) Evidence for the presence of 7-hydroperoxycholest-5-en-3β-ol in oxidized human LDL. Chemistry and Physics of Lipids 20, 214.Google Scholar
Matthias, D, Becker, CH, Godicke, W, Schmidt, R & Ponsold, K (1987) Action of cholestane-3β,5α,6β-triol on rats with particular reference to aorta. Atherosclerosis 63, 115124.CrossRefGoogle Scholar
Moilanen, T & Nikkari, T (1981) The effect of storage on the fatty acid composition of human serum. Clinica Chimica Acta 114, 111116.CrossRefGoogle ScholarPubMed
Nicolosi, RJ (1997) Dietary fat saturation effects on low-density-lipoprotein concentrations and metabolism in various animal models. American Journal of Clinical Nutrition 65, 1617S1627S.CrossRefGoogle ScholarPubMed
Nicolosi, RJ, Rogers, EJ, Kritchevsky, D, Scimeca, JA & Huth, PJ (1997) Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery 22, 266277.Google ScholarPubMed
Nishio, E, Arimura, S & Watanabe, Y (1996) Oxidized LDL induces apoptosis in cultured smooth muscle cells: A possible role for 7-ketocholesterol. Biochemical Biophysical Research Communication 223, 413418.CrossRefGoogle ScholarPubMed
Peng, SK & Taylor, CB (1983) Dietary Fats and Health. Atherogenic effect of oxidized cholesterol. 919933.Google Scholar
Peng, SK & Taylor, CB (1984) Cholesterol autoxidation, health and arteriosclerosis. World Review of Nutrition and Dietetics 44, 117154.CrossRefGoogle ScholarPubMed
Peng, SK, Taylor, CB, Tham, P, Werthessen, NT & Mikkelson, B (1978) Effect of auto-oxidation products from cholesterol on aortic smooth muscle cells An in vitro study. Archives of Pathology and Laboratory Medicine 102, 5761.Google ScholarPubMed
Ramasamy, S, Boissonneault, GA & Hennig, B (1992) Oxysterol-induced endothelial cell dysfunction in culture. Journal of the American College of Nutrition 11, 532538.CrossRefGoogle ScholarPubMed
Rong, N, Ausman, LM & Nicolosi, RJ (1997) Oryzanol decreases cholesterol absorption and aortic fatty streaks in hamsters. Lipids 32, 303309.CrossRefGoogle ScholarPubMed
Rong, JX, Rangaswamy, S, Shen, LJ, Dave, R, Chang, YH, Peterson, H, Hodis, HN, Chisolm, GM & Sevanian, A (1998) Arterial injury by cholesterol oxidation products causes endothelial dysfunction and arterial wall cholesterol accumulation. Arteriosclerosis Thrombosis and Vascular Biology 18, 18851894.CrossRefGoogle ScholarPubMed
Rose-Sallin, C, Huggett, AC, Bosset, JO, Tabacchi, R & Fay, LB (1995) Quantification of cholesterol oxidation products in milk powders using [2H(7)]cholesterol to monitor cholesterol autoxidation artifacts. Journal of Agriculture and Food Chemistry 43, 935941.CrossRefGoogle Scholar
Salonen, JT, Nyyssonen, K, Salonen, R, Porkkala-Sarataho, E, Tuomainen, TP, Diczfalusy, U & Bjorkhem, I (1997) Lipoprotein oxidation and progression of carotid atherosclerosis. Circulation 95, 840845.CrossRefGoogle ScholarPubMed
Schroepfer, GJ (2000) Oxysterols: Modulators of cholesterol metabolism and other processes. Physiological Reviews 80, 361554.CrossRefGoogle ScholarPubMed
Sevanian, A & McLeod, LL (1986) Catalytic properties and inhibition of hepatic cholesterol-epoxide hydrolase. Journal of Biological Chemistry 261, 5459.CrossRefGoogle ScholarPubMed
Shih, JCH (1980) Increased atherogenicity of oxidized cholesterol. Federation Proceedings 39, 650.Google Scholar
Shimokawa, H (1999) Primary endothelial dysfunction: atherosclerosis. Journal of Molecular and Cellular Cardiology 31, 2337.CrossRefGoogle ScholarPubMed
Sima, A, Bulla, A & Simionescu, N (1990) Experimental obstructive coronary atherosclerosis in the hyperlipidaemic hamster. Journal of Submicroscopic Cytology and Pathology 22, 116.Google Scholar
Smith, LL (1996) Review of progress in sterol oxidations: 1987–1995. Lipids 31, 453487.CrossRefGoogle ScholarPubMed
Souidi, M, Parquet, M, Ferezou, J & Lutton, C (1999) Modulation of cholesterol 7 α-hydroxylase and sterol 27-hydroxylase activities by steroids and physiological conditions in hamster. Life Science 64, 15851593.CrossRefGoogle ScholarPubMed
Staprans, I, Pan, XM, Rapp, JH & Feingold, KR (1998) Oxidized cholesterol in the diet accelerates the development of aortic atherosclerosis in cholesterol-fed rabbits. Arteriosclerosis Thrombosis and Vascular Biology 18, 977983.CrossRefGoogle ScholarPubMed
Stary, HC (1994) Changes in components and structure of atherosclerotic lesions developing from childhood to middle age in coronary arteries. Basic Research in Cardiology 89, 1732.Google ScholarPubMed
Tipton, CL, Leung, PC, Johnson, JS, Brooks, RJ & Beitz, DC (1987) Cholesterol hydroperoxides inhibit calmodulin and suppress atherogenesis in rabbits. Biochemical Biophysical Research Communications 146, 11661172.CrossRefGoogle ScholarPubMed
Trautwein, EA, Liang, J & Hayes, KC (1993) Cholesterol gallstone induction in hamsters reflects strain differences in plasma lipoproteins and bile acid profile. Lipids 28, 305312.CrossRefGoogle Scholar
Ungvari, Z, Sun, D, Huang, A, Kaley, G & Koller, A (2001) Role of endothelial [Ca2+]in activation of eNOS in pressurized arterioles by agonists and wall shear stress. American Journal of Physiology 281, H606H612.Google ScholarPubMed
US National Institutes of Health (1985) Laboratory animal welfare: Public Health Service policy on humane care and use of laboratory animals by awardee institutions; notice. Federal Register 50, 1958419585.Google Scholar
Van Poppel, G, Van de Vijver, LPL, Kosmeyer-Schuil, T, Johanns, ESD, Kardinaal, AFM, Van de Bovenkamp, P, Kruyssen, DACM & Kok, FJ (1997) Plasma oxysterols and angiographically determined coronary atherosclerosis: a case-control study. Biomarkers 2, 373378.CrossRefGoogle ScholarPubMed
Watabe, T, Kanai, M, Isobe, M & Ozawa, N (1980) Cholesterol α- and β-epoxides as obligatory intermediates in the hepatic microsomal metabolism of cholesterol to cholestanetriol. Biochimica et Biophysica Acta 619, 414419.CrossRefGoogle ScholarPubMed
Yoshitomi, Y, Kojima, S, Sugi, T, Matsumoto, Y, Yano, M & Kuramochi, M (1998) Coronary vasoreactivity to ergonovine after angioplasty: difference between the infarct-related coronary artery and the noninfarct-related coronary artery. Coronary Artery Disease 9, 105111.Google ScholarPubMed
Yildiz, O, Smith, JR & Purdy, RE (1998) Serotonin and vasoconstrictor synergism. Life Science 62, 17231732.CrossRefGoogle ScholarPubMed
Zieden, B, Kaminskas, A, Kristenson, M, Kucinskiene, Z, Vessby, B, Olsson, AG & Diczfalusy, U (1999) Increased plasma 7 β-hydroxycholesterol concentrations in a population with a high risk for cardiovascular disease. Arteriosclerosis Thrombosis and Vascular Biology 19, 967971.CrossRefGoogle Scholar