Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T01:00:26.503Z Has data issue: false hasContentIssue false

The effects of dietary folate and zinc on the outcome of pregnancy and early growth in rats

Published online by Cambridge University Press:  09 March 2007

N. J. Fuller
Affiliation:
MRC Dunn Nutritional Laboratory, Downhams Lane, Milton Road, Cambridge CB4 IXJ
P. H. Evans
Affiliation:
MRC Dunn Nutritional Laboratory, Downhams Lane, Milton Road, Cambridge CB4 IXJ
M. Howlett
Affiliation:
MRC Dunn Nutritional Laboratory, Downhams Lane, Milton Road, Cambridge CB4 IXJ
C. J. Bates
Affiliation:
MRC Dunn Nutritional Laboratory, Downhams Lane, Milton Road, Cambridge CB4 IXJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The objective of the present study was to determine the effects of two levels of folic acid and two levels of zinc in the diets of rats during pregnancy and lactation. It addressed, among other things, the question of whether an inhibitory effect of folic (pteroylmonoglutamic) acid on Zn absorption might result in a secondary Zn deficiency in either the dams or the pups.

2. A purified diet was given to four groups of female DNL (Norwegian) Hooded rats, before and during pregnancy and during lactation. It contained the four possible combinations of: no added folic acid or 100 μg added pteroylmonoglutamic acid/g, and 6·6 or 20·2 μg Zn/g. Pups and dams were killed on day 20 of gestation or on day 20 postpartum. Measurements of body-weights, food intakes, blood folate and tissue Zn levels were performed.

3. The group with low Zn and low folate intake had a satisfactory reproductive outcome, and there were only minor effects of the supplements on body-weights.

4. Additional folate greatly increased blood (erythrocyte and plasma) folate levels, but did not compromise tissue Zn concentrations. Zn supplementation also enhanced blood folate levels, for reasons which are not yet clear.

5. There was a moderate enhancing effect of the Zn supplement on Zn levels in the livers and kidneys of pregnant dams, and the kidneys of lactating dams.

6. If the conclusions can be extrapolated to humans, then the results provide some reassurance that a high folate intake from prenatal supplementation need not necessarily cause Zn depletion, and hence functional Zn deficiency in pregnant women and their offspring.

Type
Other Studies Relevant to Human Nutrition
Copyright
Copyright © The Nutrition Society 1988

References

Akesson, B., Fehling, C., Jagestad, M. & Stenram, U. (1982). British Journal of Nutrition 47, 505520.CrossRefGoogle Scholar
Albert, A. (1953). BiochemicalJournal 54, 646654.Google Scholar
Baker, H., Thind, I. S., DeAngelis, B., Feingold, S. & Frank, O. (1984). Nutrition Reports International 30, 587596.Google Scholar
Baumslag, N., Edelstein, T. & Metz, J. (1970). British Medical Journal i, 1617.CrossRefGoogle Scholar
Blot, I., Papiernik, E., Kaltwasser, J. P., Werner, E. & Tchernia, G. (1981). Gynecology and Obstetrics Investigation 12, 294304.CrossRefGoogle Scholar
Clarke, H. E., Coates, M. E., Eva, J. K., Ford, D. J., Milner, C. K., O'Donaghue, P. N., Scott, P. P. & Ward, R. J. (1977). Laboratory Animals 11, 128.CrossRefGoogle ScholarPubMed
Cunnane, S. C. (1982). British Journal of Nutrition 47, 495504.CrossRefGoogle Scholar
Fairweather-Tait, S. J., Wright, A. J. A., Cooke, J. & Franklin, J. (1985). British Journal of Nutrition 54, 401413.CrossRefGoogle Scholar
Fosmire, G. J., Greeley, S. & Sandstead, H. H. (1977). Journal of Nutrition 107, 15431550.CrossRefGoogle Scholar
Fuller, N. J., Bates, C. J. & Scott, K. J. (1983). Clinica Chimica Acta 131, 343348.CrossRefGoogle Scholar
Ghishan, F. K., Said, H. M., Wilson, P. C., Murrell, J. E. & Greene, H. L. (1986). American Journal of Clinical Nutrition 43, 258262.CrossRefGoogle Scholar
Greenfield, M., Briggs, G. M., Watson, R. H. J. & Yudkin, J. (1969). Proceedings of Nutrition Society 28, 43A.Google Scholar
Hakim, A. M., Arrieta, M. J., Cooper, B. A. & Pappins, H. M. (1984). Journal of Neurochemistry 42, 15821587.CrossRefGoogle Scholar
Halas, E. S., Wallwork, J. C. & Sandstead, H. H. (1982). Journal of Nutrition 112, 542551.CrossRefGoogle Scholar
Herman, Z., Greeley, S. & King, J. C. (1985). Nutritional Research 5, 211219.CrossRefGoogle Scholar
Herzfeld, G. A., Reynolds, L. A. & Ritchey, S. J. (1985). Nutrition Reports International 31, 849856.Google Scholar
Iyengar, L. & Rajalakshmi, K. (1975). American Journal of Obstetrics and Gynecology 122, 332336.CrossRefGoogle Scholar
Lukaski, H. C., Bolonchuk, W. W. & Milne, D. B. (1986). Federation Proceedings 45, 973.Google Scholar
McMaster, D., Ewing, A. S., Erwin, C., McBriar, D. L. & Love, A. H. G. (1985). Nutritional Research Suppl. 1, 267270.Google Scholar
Masters, D. G., Keen, C. L., Lonnerdal, B. & Hurley, L. S. (1983). Journal of Nutrition 113, 905912.CrossRefGoogle Scholar
Milne, D. B., Canfield, W. K., Mahalko, J. R. & Sandstead, H. H. (1984). American Journal of Clinical Nutrition 39, 535539.CrossRefGoogle Scholar
Morgan, B. L. G. & Winick, M. (1978). British Journal of Nutrition 40, 529533.CrossRefGoogle Scholar
Mukherjee, M. D., Sandstead, H. H., Ratnaparkhi, M. V., Johnson, L. K., Milne, D. B. & Strelling, H. P. (1984). American Journal of Clinical Nutrition 40, 496507.CrossRefGoogle Scholar
Pallauf, J. & Kirchgessner, M. (1972). International Journal of Vitamin and Nutrition Research 42, 555564.Google Scholar
Richardson, R. E., Healy, M. J. & Nixon, P. F. (1979). Biochimica et Biophysica Acta 585, 128133.CrossRefGoogle Scholar
Rolschau, J., Date, J. & Kristoffersen, K. (1979). Acta Obstetrica et Gynecologica Scandinavica 58, 343346.CrossRefGoogle Scholar
Sandstead, H., Cherry, F., Bazzano, G., Johnson, L., Bunce, H., Milne, D., Mahalko, J. & Batson, H. (1987). Federation Proceedings 46, 748.Google Scholar
Simmer, K., Iles, C. A., James, C. & Thompson, R. P. H. (1987). American Journal of Clinical Nutririon 45, 122125.CrossRefGoogle Scholar
Simmer, K. & Thompson, R. P. H. (1985). Acta Paediatrica Scandinavica 319, Suppl., 158163.CrossRefGoogle Scholar
Tamura, T., Kaiser, L. L., Watson, J. E., Halsted, C. H., Hurley, L. S. & Stokstad, E. L. R. (1987). Archives of Biochemistry and Biophysics 256, 311316.CrossRefGoogle Scholar
Tamura, T., Shane, B., Baer, M. T., King, J. C., Margen, S. & Stokstad, E. L. R. (1978). American Journal of Clinical Nutrition 31, 19841987.CrossRefGoogle Scholar
Tchernia, G., Blot, I., Rey, A., Kaltwasser, J. P., Zittoun, J. & Papiernik, E. (1982). Developmental Pharmacology and Therapeutics 4, Suppl. 1, 5865.CrossRefGoogle Scholar
Tuttle, S., Aggett, P. J., Campbell, D. & MacGillivray, I. (1985). American Journal of Clinical Nutrition 41, 10321041.CrossRefGoogle Scholar
Wada, L., Keating, S., King, J. C. & Stokstad, E. L. R. (1986). Federation Proceedings 45, 1081.Google Scholar
Walzem, R. L., Clifford, C. K. & Clifford, A. J. (1983). Journal of Nutrition 113, 421429.CrossRefGoogle Scholar
Williams, R. B., Demertzis, P. & Mills, C. F. (1973 b). Proceedings of Nutrition Society 32, 3A.Google Scholar
Williams, R. B., Mills, C. F. & Davidson, R. J. L. (1973 a). Proceedings of Nutrition Society 32, 2A.Google Scholar