Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T02:13:33.443Z Has data issue: false hasContentIssue false

The effects of dietary acid stress on bone metabolism in young ovariectomized and intact rats

Published online by Cambridge University Press:  09 March 2007

M. E. kunkel
Affiliation:
Depurtment of Food Science, Clemson University, Clemson, SC 29631, USA
Z. K. Roughead
Affiliation:
Depurtment of Food Science, Clemson University, Clemson, SC 29631, USA
E. A. Nichter
Affiliation:
Depurtment of Food Science, Clemson University, Clemson, SC 29631, USA
J. M. Navia
Affiliation:
Depurtment of Food Science, Clemson University, Clemson, SC 29631, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Two studies were performed to determine the effects of acid stress and ovariectomy on bone metabolism in young rats. In Expt 1, eighteen female weanling Sprague-Dawley-descended rats were ovariectomized, placed in one of three dietary groups and given a diet containing (g/kg): 6 calcium and 3, 6 or 12 phosphorus for 10 weeks. In Expt 2, thirty-two female weanling Sprague-Dawley-descended rats were ovariectomized, and thirty-two were left intact. Eight rats from each group were given a diet containing (g/kg): 6 Ca and 3 P, 12 P, 3 P+1 S or 3 P+20 ammonium chloride for 10 weeks.

2. Feeding diets containing 12 g P/kg resulted in decreased serum Ca and increased urinary P with no changes in femur composition. Feeding high-sulphate and ammonium chloride diets resulted in increased urinary Ca and, when combined with ovariectomy, lower femur Ca and P with no changes in femur hydroxyproline or hexosamines.

3. The findings reflect the more rapid turnover of the amorphous calcium phosphate salts found in greater amounts in bones of younger animals than for more stable apatitic crystals that predominate in bones of older animals.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Avioli, L.V. (1981). Federation Proceedings 40, 2481–2422.Google Scholar
Barr, A. J. (1976). Statistical Analysis System. Raleigh, NC: SAS Institute, Inc.Google Scholar
Barzel, U. S. (1969). Calcified Tissue Research 4, 94100.CrossRefGoogle Scholar
Barzel, U. S. (1975). Endocrinology 96, 13041306.CrossRefGoogle Scholar
Barzel, U. S. & Jowsey, J. (1969). Clinical Science 36, 517524.Google Scholar
Bell, R. R., Draper, H. H., Tzeng, D. Y. M., Shin, H. K. & Schmidt, R. (1977). Journal of Nutrition 107, 4250.CrossRefGoogle Scholar
Bergman, I. & Loxley, R. (1970). Clinica Chimica Acta 27, 347349.CrossRefGoogle Scholar
Chen, P. S., Torivara, T. Y. & Warner, H. (1956). Analytical Chemistry 28, 17561758.CrossRefGoogle Scholar
Draper, H. H., Bell, R. R. & Shin, K. S. (1980). Journal of Nutrition 110, 778783.CrossRefGoogle Scholar
Draper, H. H., Sie, T. L. & Bergan, J. G. (1972). Journal of Nutrition 102, 11331142.CrossRefGoogle Scholar
Gatt, R. & Berman, E. R. (1966). Analytical Biochemistry 15, 167–167.CrossRefGoogle Scholar
Glimcher, M. J. (1984). Philosophical Transactions of the Royal Society of London 304, 479508.Google Scholar
Heaney, R. P. & Recker, R. R. (1982). Journal of Laboratory Clinical Medicine 99, 4655.Google Scholar
Hegsted, M., Schuette, S. A. I., Zemel, M. B. & Linkswiler, H. M. (1981). Journal of Nutrition 11, 553562.CrossRefGoogle Scholar
Henry, R. J. (ed.) (1967). In Clinical Chemistry Principles and Techniques. New york: Harper and Row.Google Scholar
Hutchinson, T. A., Polansky, J. M. & Feinstein, A. R. (1979). Lancet ii, 705709.CrossRefGoogle Scholar
Hutchinson, T. A., Polansky, J. M. & Feinstein, A. R. (1982). Nutrition Reviews 40, 1315.Google Scholar
Jaffe, H. L., Bodansey, A. & Chandler, J. P. (1932). Journal of Experimental Medicine 56, 823828.CrossRefGoogle Scholar
Newell, G. K. & Beauchene, R. E. (1975). Journal of Nutrition 105, 10391047.CrossRefGoogle Scholar
Niedermeir, W., Griggs, J. H. & Johnson, R. S. (1971). Applied Spectrophorometry 25, 5356.CrossRefGoogle Scholar
Perkin-Elmer Corp. (1966). Supplement to Analytical Methods for Atomic Absorption Spectrophotometry. Norfolk, conn: Perkin-Elmer Corp.Google Scholar
Posner, A. S. (1973). Federation Proceedings 32, 19331937.Google Scholar
Swaroop, A. (1973). Clinica Chimica Acta 46, 33336.CrossRefGoogle Scholar
Wachman, A. & Bernstein, D. D. (1968). Lancet i, 95959.Google Scholar
Whiting, S. J. & Draper, H. H. (1980). Journal of Nutrition 110, 212222.CrossRefGoogle Scholar
Whiting, S. J. & Draper, H. H. (1981 a). Journal of Nutrition 111, 17211726.CrossRefGoogle Scholar
Whiting, S. J. & Draper, H. H. (1981 b). Nutrition Reviews 39, 1113.Google Scholar
Wyshak, G. (1981). Journal of Gerontology 36, 424426.CrossRefGoogle Scholar