Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T09:10:01.023Z Has data issue: false hasContentIssue false

Effects of calcium ionophore on vitamin E-deficient rat muscle

Published online by Cambridge University Press:  09 March 2007

Joanne Phoenix
Affiliation:
Muscle Research Centre, Department of Medicine, University of Liverpool, Liverpool L69 3BX
Richard H. T. Edwards
Affiliation:
Muscle Research Centre, Department of Medicine, University of Liverpool, Liverpool L69 3BX
Malcolm J. Jackson
Affiliation:
Muscle Research Centre, Department of Medicine, University of Liverpool, Liverpool L69 3BX
Malcolm J. Jackson
Affiliation:
Muscle Research Centre, Department of Medicine, University of Liverpool, Liverpool L69 3BX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Damage to skeletal muscles may be mediated via free radicals or intracellular calcium overload. To look for inter-relationships between these pathways we have examined the effect of intracellular Ca overload on muscles from rats fed on either a vitamin E-deficient or vitamin E-sufficient diet and assessed the non-enzymic lipid peroxidation in these muscles by examining the production of thiobarbituric acid reactive substances by homogenates. Vitamin E-deficient muscles were more susceptible to Ca-induced intracellular enzyme efflux and this was acutely corrected by supplementation of the external medium with 230 μmol α-tocopherol/l. Vitamin E-deficient muscles showed increased levels of basal lipid peroxides and were more susceptible to iron-catalysed lipid peroxidation. Addition of the Ca ionophore A23187 increased lipid peroxidation in vitamin E-deficient muscle homogenates, but had the opposite effect in vitamin E-sufficient muscles. These results demonstrate that vitamin E-deficient muscle has an increased susceptibility to intracellular Ca overload, but that this effect cannot be explained by a direct stimulatory effect of the ionophore on non-enzymic lipid peroxidation.

Type
Micronutrients
Copyright
Copyright © The Nutrition Society 1990

References

Allen, W. M., Parr, W. H., Bradley, R., Swannock, K., Barton, C. R. Q. & Tyler, R. (1974). Loss of vitamin E in stored cereals in relation to a myopathy of yearling cattle. Veterinary Record 94, 373 375.CrossRefGoogle ScholarPubMed
Bjorneboe, A., Bjorneboe, G.-E. Aa., Hagen, B. F. & Drevon, C. A. (1987 a). Acute and chronic effects of ethanol on secretion of α-tocopherol from primary cultures of rat hepatocytes. Biochimica et Biophysica Acta 922, 357363.CrossRefGoogle ScholarPubMed
Bjorneboe, G.E. Aa., Bjorneboe, A., Hagen, B. F., Morland, J. & Drevon, C. A. (1987 b). Reduced hepatic alpha-tocopherol content after long-term administration of ethanol to rats. Biochimica et Biophysica Acta 918, 236241.CrossRefGoogle ScholarPubMed
Braughler, J. M., Duncan, L. A. & Goodman, T. (1985). Calcium enhances in vitro free radical-induced damage to brain synaptosomes, mitochondria and cultured spinal cord neurons. Journal of Neurochemistry 45, 12881293.CrossRefGoogle ScholarPubMed
Catignani, G. L. & Bieri, N. G. (1983). Simultaneous determination of retinol and alpha-tocopherol in serum or plasma by liquid chromatography. Clinical Chemistry 29, 708712.CrossRefGoogle ScholarPubMed
Claremont, D., Jackson, M. J. & Jones, D. A. (1984). Accumulation of calcium in experimentally damaged mouse muscles in vitro. Journal of Physiology 353, 57P.Google Scholar
Csallany, A. S., Guan, M. D., Manwaring, J. D. & Addis, P. B. (1984). Free malondialdehyde determination in tissues by high-performance liquid chromatography. Analytical Biochemistry 142, 277283.CrossRefGoogle ScholarPubMed
Douglas, C. E., Chan, A. C. & Choy, P. C. (1986). Vitamin E inhibits platelet phospholipase A2. Biochimica et Biophysica Acta 876, 639645.CrossRefGoogle ScholarPubMed
Fink, R., Clemens, M. R., Marjok, D. H., Patsalos, P., Cawood, P., Norden, A. G., Iverson, S. A. & Dormandy, T. L. (1985). Increased free radical activity in alcoholics. Lancet i, 291294.CrossRefGoogle Scholar
Fujii, H. & Miwa, S. (1983). Pyruvate kinase. Assay in serum and erythrocytes. In Methods of Enzymatic Analysis, 3rd ed., vol. 3, pp. 496507 [Bergmeyer, H. U., editor]. New York and London: Academic Press.Google Scholar
Gitter, M., Bradley, R. & Pepper, R. (1978). Nutritional myodegeneration in dairy cows. Veterinary Record 103, 2426.CrossRefGoogle ScholarPubMed
Grossman, S. & Waksman, E. G. (1984). New aspects of the inhibition of soybean lipoxygenase by α-tocopherol. International Journal of Biochemistry 16, 281289.CrossRefGoogle ScholarPubMed
Hope, W. C., Dalton, C., Machlin, L. J., Filipski, R. J. & Vane, F. M. (1975). Influence of dietary vitamin E on prostaglandin biosynthesis in rat blood. Prostaglandins 10, 557571.CrossRefGoogle ScholarPubMed
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1983 a). Lipid peroxidation of skeletal muscle: an in vitro study. Bioscience Reports 3, 609619.CrossRefGoogle ScholarPubMed
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1983 b). Vitamin E and skeletal muscle. In Biology of Vitamin E, Ciba Foundation Symposium Series no. 101, pp. 224229 [Porter, R. and Whelan, J., editors]. London: Pitman.CrossRefGoogle Scholar
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1984). Experimental skeletal muscle damage: the nature of the calcium-activated degenerative processes. European Journal of Clinical Investigation 14, 369374.CrossRefGoogle ScholarPubMed
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1985 a). Vitamin E and muscle diseases. Journal of Inherited Metabolic Disease 8, Suppl. 1, 8487.CrossRefGoogle ScholarPubMed
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1985 b). Measurements of calcium and other elements in muscle biopsy samples from patients with Duchenne Muscular Dystrophy. Clinica Chimica Acta 147, 215221.CrossRefGoogle ScholarPubMed
Jackson, M. J., Wagenmakers, A. J. M. & Edwards, R. H. T. (1987). Effect of inhibitors of arachidonic acid metabolism on efflux of intracellular enzymes from skeletal muscle following experimental damage. Biochemical Journal 241, 403407.CrossRefGoogle ScholarPubMed
Jain, S. K. & Shohet, S. B. (1981). Calcium potentiates the peroxidation of erythrocyte membrane lipids. Biochimica et Biophysica Acta 642, 4654.CrossRefGoogle ScholarPubMed
Jones, D. A., Jackson, M. J. & Edwards, R. H. T. (1983). Release of intracellular enzymes from an isolated mammalian skeletal muscle preparation. Clinical Science 65, 192201.CrossRefGoogle ScholarPubMed
Jones, D. A., Jackson, M. J., McPhail, G. & Edwards, R. H. T. (1984). Experimental mouse muscle damage: the importance of external calcium. Clinical Science 66, 317322.CrossRefGoogle ScholarPubMed
Lee, H.-S. & Csallany, A. S. (1987). Measurements of free and bound MDA in vitamin E-deficient and -supplemented rat liver tissue. Lipids 22, 104107.CrossRefGoogle Scholar
Litov, D. E., Gee, J. E., Downey, J. E. & Tappel, A. L. (1981). The role of lipid peroxidation during chronic and acute exposure to ethanol as determined by pentane expiration in the rat. Lipids 16, 52 57.CrossRefGoogle ScholarPubMed
McMurray, C. H., Rice, D. A. & Blanchflower, W. J. (1980). The effect of pretreatment on the stability of moist barley. Proceedings of the Nutrition Society 39, 65A.Google Scholar
McMurray, W. & Dormandy, T. L. (1974). Lipid autoxidation in human skeletal muscles. Clinica Chimica Acta 52, 105114.CrossRefGoogle Scholar
Meydani, M., Meydani, S. N., Macauley, J. B. & Blumberg, J. B. (1985). Influence of dietary vitamin E and selenium on the ex vivo synthesis of prostaglandin E2 in brain regions of young and old rats. Prostaglandins Leukotrienes and Medicine 18, 337346.CrossRefGoogle ScholarPubMed
Morgan, A., McDonald-Gibson, R. G. & Slater, T. F. (1984). Arachidonic acid metabolism by rat uterus. Biochemical Society Transactions 12, 837838.CrossRefGoogle Scholar
Nakamura, T. & Masugi, F. (1979). Transfer of α-tocopherol from plasma to erythrocytes in vitamin E-deficient rats. International Journal of Vitamin and Nutritional Research 49, 364369.Google ScholarPubMed
Narumiya, S., Salmon, J. A., Cottec, F. H., Weatherley, B. C. & Flower, R. J. (1981). Arachidonic acid 15-lipoxygenase from rabbit peritoneal polymorphonuclear leukocytes. Partial purification and properties. Journal of Biological Chemistry 256, 95839592.CrossRefGoogle Scholar
Nugteren, D. H. (1975). Arachidonate lipoxygenase in blood platelets. Biochimica et Biophysica Acta 380, 299307.CrossRefGoogle ScholarPubMed
Patterson, D. S. P. & Allen, W. M. (1972). Biochemical aspects of some pig muscle disorders. British Veterinary Journal 128, 101110.CrossRefGoogle ScholarPubMed
Phoenix, J., Edwards, R. H. T. & Jackson, M. J. (1989). Inhibition of Ca2+-induced cytosolic enzyme efflux from skeletal muscle by vitamin E and related compounds. Biochemical Journal 257, 207213.CrossRefGoogle ScholarPubMed
Reddanna, P., Rao, M. K. & Reddy, C. C. (1985). Inhibition of 5-lipoxygenase by vitamin E. FEBS Letters 193, 3943.CrossRefGoogle ScholarPubMed
Ruzicka, T., Vittov, A. & Printz, M. P. (1983). Epidermal arachidonate lipoxygenase. Biochimica et Biophysica Acta 751, 369374.CrossRefGoogle ScholarPubMed
Tappel, A. L. (1962). Vitamin E as the biological lipid antioxidant. Vitamins and Hormones 20, 493510.CrossRefGoogle Scholar
Wrogemann, K. & Pena, S. D. J. (1976). Mitochondrial calcium overload: A general mechanism for cell-necrosis in muscle diseases. Lancet i, 672674.CrossRefGoogle Scholar