Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T01:18:55.943Z Has data issue: false hasContentIssue false

Effects of bioactive substances in milk on mineral and trace element metabolism with special reference to casein phosphopeptides

Published online by Cambridge University Press:  09 March 2007

Katharina E. Scholz-Ahrens*
Affiliation:
Department of Physiology and Biochemistry of Nutrition, Federal Dairy Research Centre, 24103 Kiel, Germany
J. Schrezenmeir
Affiliation:
Department of Physiology and Biochemistry of Nutrition, Federal Dairy Research Centre, 24103 Kiel, Germany
*
*Corresponding author: K. E. Scholz-Ahrens, fax +49 431 609 2472, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bioactivity of phosphopeptides yielded after tryptic hydrolysis of casein (CPP) was reported more than 50 years ago when CPP were found to improve calcium balance in rachitic newborns. Several investigations have been carried out to study the effects of CPP mainly on calcium metabolism but also on other minerals like iron and zinc. Most of the experiments were in vitro studies or short-term experiments like the effects of CPP after single meals or their effect on mineral disappearance from intestinal everted sac or ligated loop. Investigations on calcium balance were also mainly short term, i.e. 3–4 weeks, and mainly done in rats. A few experiments have been carried out in minipigs, an animal model that is closer to the human than the rat. Studies in human were rare and short term. To date a variety of other peptides have been isolated after enzymatic hydrolysis, and some have been investigated for bioactivity, with equivocal findings. Bioactivity of phosphopeptides seemed to be more obvious when investigations were done in vitro or short term. Results were less clear in metabolic balance studies, especially under physiological conditions. The composition of the basal diet, i.e. content of calcium and phytate, or the protein source had a significant impact on the effect of phosphopeptides. It was concluded that phosphopeptides revealed positive effects on mineral solubility and absorbability, and bone mineralisation under certain experimental conditions. Accordingly they could have a beneficial effect on bone health for some groups of the population.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2000

References

Aït-Oukhatar, N, Bouhallab, S, Bureau, F, Arhan, P, Maubois, J-L, Drosdowsky, MA & Bouglé, DL (1997) Bioavailability of caseinophosphopeptide bound iron in the young rat Journal of Nutritional Biochemistry 8, 190194.Google Scholar
Brommage, R, Juillerat, MA & Jost, R (1991) Influence of casein phosphopeptides and lactulose on intestinal calcium absorption in adult female rats Lait 71, 173180.Google Scholar
Brulé, G, Roger, L, Fauquant, J & & Piot, M (1982) Phosphopeptides from casein-based material. United States Patent 4,361,587.Google Scholar
Gagnaire, V, Pierre, A, Molle, D & Leonil, J (1996) Phosphopeptides interacting with colloidal calcium phosphate isolated by tryptic hydrolysis of bovine casein micelles Journal of Dairy Research 63, 405422.Google Scholar
Gerber, HW & Jost, R (1986) Casein phosphopeptides: their effect on calcification of in vitro cultured embryonic rat bone Calcified Tissue International 38, 350357.Google Scholar
Hansen, M, Sandström, B, Lönnerdal, B (1996) The effect of casein phosphopeptides on zinc and calcium absorption from high phytate infant diets assessed in rat pups and caco-2 cells Pediatric Research 40, 547552.CrossRefGoogle ScholarPubMed
Hansen, M, Sandström, B, Jensen, M, Sørensen, SS (1997) Casein phosphopeptides improve zinc and calcium absorption from rice-based but not from whole-grain infant cereal Journal of Pediatric Gastroenterology and Nutrition 24, 5662.Google Scholar
Harper, D, Osborn, JC, Hefferren, JJ & Clayton, R (1986) Cariostatic evaluation of cheeses with diverse physical and compositional characteristics Caries Research 20, 123130.Google Scholar
Harzer, G & Kauer, H (1982) Binding of zinc to casein American Journal of Clinical Nutrition 35, 981987.CrossRefGoogle ScholarPubMed
Heaney, RP, Saito, Y & Orimo, H (1994) Effect of caseinphosphopeptide on absorbability of co-ingested calcium in normal postmenopausal women Journal of Bone and Mineral Metabolism 12, 7781.CrossRefGoogle Scholar
Kasai, T, Honda, T & Kiriyama, S (1992) Caseinphosphopeptides (CPP) in faeces of rats fed casein diet Bioscience Biotechnology and Biochemistry 56, 11501151.Google Scholar
Kasai, T, Iwasaki, R, Tanaka, M & Kiriyama, S (1995) Caseinphosphopeptides (CPP) in faeces and contents in digestive tract of rats fed casein and CPP preparations Bioscience Biotechnology and Biochemistry 59, 2630.CrossRefGoogle ScholarPubMed
Kitts, DD, Yuan, YV, Nagasawa, T & Moriyama, Y (1992) Effect of casein, casein phosphopeptides and calcium intake on ileal 45Ca disappearance and temporal systolic blood pressure in spontaneously hypertensive rats British Journal of Nutrition 68, 765781.Google Scholar
Kopra, N, Scholz-Ahrens, KE & Barth, CA (1992) Effect of casein phosphopeptides on utilisation of calcium in vitamin D-replete and vitamin D-deficient rats Milchwissenschaft 47, 488493.Google Scholar
Lee, YS, Noguchi, T & Naito, H (1979) An enhanced intestinal absorption of calcium in the rat directly attributed to dietary casein Agricultural and Biological Chemistry 43, 20092011.Google Scholar
Lee, YS, Noguchi, T & Naito, H (1980) Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet British Journal of Nutrition 43, 457467.CrossRefGoogle Scholar
Lee, YS, Noguchi, T & Naito, H (1983) Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides British Journal of Nutrition 49, 6776.CrossRefGoogle ScholarPubMed
Li, Y, Tomé, D & Desjeux, JF (1989) Indirect effect of casein phosphopeptides on calcium absorption in rat ileum in vitro Reproduction Nutrition and Development 29, 227233.Google Scholar
Madapallimattam, G & Bennick, A (1990) Phosphopeptides derived from human salivary, acidic proline-rich proteins – biological activities and concentration in saliva Biochemical Journal 270, 297304.CrossRefGoogle ScholarPubMed
Matsui, T, Yano, H, Awano, T, Harumoto, T & Saito, Y (1994) The influences of casein phosphopeptides on metabolism of ectopic bone induced by decalcified bone matrix implantation in rats Journal of Nutritional Science and Vitaminology 40, 137145.Google Scholar
McDonagh, D & FitzGerald, RJ (1998) Production of caseinophosphopeptides (CPPs) from sodium caseinate using a range of commercial protease preparations International Dairy Journal 8, 3945.CrossRefGoogle Scholar
Meisel, H & Frister, H (1988) Chemical characterisation of a caseinophosphopeptide isolated from in vivo digests of a casein diet Biological Chemistry Hoppe-Seyler 369, 12751279.CrossRefGoogle ScholarPubMed
Mellander, O (1947) On chemical and nutritional differences between casein from human and from cow's milk Upsala Läkareförenings Förhandlinger 52, 107128.Google Scholar
Mellander, O (1950) The physiological importance of the casein phosphopeptide calcium salts. II Peroral calcium dosage of infants Acta Societatis Medicorum Uppsaliensis 55, 247255.Google ScholarPubMed
Mellander, O (1963) Phosphopeptides: chemical properties and their possible role in the intestinal absorption of metals.In The Transfer of Calcium and Strontium Across Biological Membranes, 265276 [Wasserman, RH, editors]. New York: Academic Press.Google Scholar
Minaguchi, K, Madapallimattam, G & Bennick, A (1988) The presence and origin of phosphopeptides in human saliva Biochemical Journal 250, 171177.Google Scholar
Mykkänen, HM & Wasserman, RH (1980) Enhanced absorption of calcium by casein phosphopeptides in rachitic and normal chicks Journal of Nutrition 110, 21412148.Google Scholar
Nagasawa, T, Yuan, YV & Kitts, DD (1991) Casein phosphopeptides enhance paracellular calcium absorption but do not alter temporal blood pressure in normotensive rats Nutrition Research 11, 819830.Google Scholar
Naito, H, Kawakami, A & Imamura, T (1972) In vivo formation of phosphopeptide with calcium-binding property in the small intestinal tract of the rat fed on casein Agricultural and Biological Chemistry 36, 409415.Google Scholar
Naito, H & Suzuki, H (1974) Further evidence for the formation in vivo of phosphopeptide in the intestinal lumen from dietary ß-casein Agricultural and Biological Chemistry 38, 15431545.CrossRefGoogle Scholar
Pérès, H-M, Bouhallab, S, Bureau, F, Neuville, D, Maubois, J-L, Devroede, G, Arhan, P, Bouglé, D (1999) Mechanisms of absorption of caseinophosphopeptide bound iron Journal of Nutritional Biochemistry 10, 215222.Google Scholar
Pointillart, A, Guéguen, L (1989) Absence d'effet de l'incorporation d'un phosphopeptide du lait sur l'utilisation du calcium et du phosphore chez le jeune porc Reproduction Nutrition Development 29, 477486.Google Scholar
Reeves, RE & Latour, NG (1958) Calcium phosphate sequestering phosphopeptide from casein Science 128, 472.Google Scholar
Reynolds, C (1997) Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions Journal of Dental Research 76, 15871595.CrossRefGoogle ScholarPubMed
Rosen, S, Min, DB, Harper, DS, Harper, WJ, Beck, EX & Beck, FM (1984) Effect of cheese, with and without sucrose, on dental caries and recovery of Streptococcus mutans in rats Journal of Dental Research 63, 894896.Google Scholar
Saito, Y, Lee, YS & Kimura, S (1998) Minimum effective dose of casein phosphopeptides (CPP) for enhancement of calcium absorption in growing rats International Journal of Vitaminology and Nutrition Research 68, 335340.Google ScholarPubMed
Sato, R, Noguchi, T & Naito, H (1983) The necessity for the phosphate portion of casein molecules to enhance Ca absorption from the small intestine Agricultural and Biological Chemistry 47, 24152417.Google Scholar
Sato, R, Noguchi, T & Naito, H (1986) Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine Journal of Nutritional Science and Vitaminology 32, 6776.Google Scholar
Scholz-Ahrens, KE, Ackermann, J, de Vrese, M & Barth, CA (1993) Effect of casein on the antagonistic action of dietary phytate on calcium absorption in rats.In Bioavailability '93, Nutritional, Chemical and Food Progressing implications of Nutrient Availability, 215218 [Schlemmer, U, editors]. Karlsruhe: Berichte der BFE.Google Scholar
Scholz-Ahrens, KE, Hess, J & Barth, CA (1996) Knochenmineralisation und Bruchstabilität in Abhängigkeit von Calciumzufuhr, Alter und Skelettbereich bei der Ratte Zeitschrift für Ernährungswissenschaft 35, 9192.Google Scholar
Scholz-Ahrens, KE, Kopra, N & Barth, CA (1990) Effect of casein phosphopeptides on utilization of calcium in minipigs and vitamin-D-deficient rats Zeitschrift für Ernährungswissenschaft 29, 295298.CrossRefGoogle ScholarPubMed
Scholz-Ahrens, KE, Kopra, N, de Vrese, M & Barth, CA (1989) Influence of casein and whey protein concentrate on calcium balance, bone density and plasma calcitonin and parathyroid hormone in Göttingen minipigs.In Proceedings of the 2nd Symposium on Preventive and Therapeutic Use of Calcium, Vitamin D, and Other Calciotropic Drugs, Prague, 108 [Purkynecaron, JE, editors]. Prague: Tiskařské Zárody.Google Scholar
Scholz-Ahrens, KE, Kopra, N, de Vrese, M & Barth, CA (1990) Einfluß verschiedener Milchproteine auf den Calciumhaushalt bei bedarfsgerechter und stark reduzierter Calciumzufuhr Ernährungsumschau 37, 170.Google Scholar
Scholz-Ahrens, KE, Kopra, N, de Vrese, M & Barth, CA (1990) Einfluß von Casein und Molkenprotein auf die Calciumbilanz, Knochenmineralisation und Plasma-Konzentration von Parathormon und Vitamin-D-Metaboliten beim Miniaturschwein Journal of Animal Physiology and Animal Nutrition 64, 19.Google Scholar
Scholz-Ahrens, KE, de Vrese, M, Barth, CA & AW, Norman (1991) Influence of casein-derived phosphopeptides on the bioavailability of calcium in vitamin D-deficient miniature pigs.In Vitamin D, Gene Regulation, Structure–Function Analysis and Clinical Application, 724725 [Bouillon, R and Thomasset, M, editors]. Berlin: W de Gruyter.Google Scholar
Schüpach, P, Neeser, JR, Golliard, M, Rouvet, M & Guggenheim, B (1996) Incorporation of caseinoglycomacropeptide and caseino phosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci Journal of Dental Research 75, 17791788.Google Scholar
Silva, MF, de, A, Burgess, RC & Sandham, HJ (1987) Effects of cheese extract and its fractions on enamel demineralization in vitro and in vivo in humans Journal of Dental Research 66, 15271531.CrossRefGoogle ScholarPubMed
Silva, MF, de, A, Jenkins, GN, Burgess, RC & Sandham, HJ (1986) Effects of cheese on experimental caries in humans Caries Research 20, 263269.CrossRefGoogle Scholar
Tsuchita, H, Goto, T, Shimizu, T, Yonehara, Y & Kuwata, T (1996) Dietary casein phosphopeptides prevent bone loss in aged ovariectomized rats Journal of Nutrition 126, 8693.Google Scholar
Tsuchita, H, Goto, T, Yonehara, Y & Kuwata, T (1995) Calcium and phosphorus availability from casein phosphopeptides in male growing rats Nutrition Research 15, 16571667.CrossRefGoogle Scholar
Tsuchita, H & Kuwata, T (1995) Trace lipid from whey-mineral complex enhances calcium availability in young ovariectomized rats British Journal of Nutrition 73, 299309.Google Scholar
Tsuchita, H, Sekiguchi, I & Kuwata, T (1993) Comparison of the effects of whey mineral complexes on bone metabolism in male growing rats Journal of Nutritional Science and Vitaminology 39, 473487.Google Scholar
Tsuchita, H, Sekiguchi, I, Kuwata, T, Igarashi, C & Ezawa, I (1993) The effect of casein phosphopeptides on calcium utilization in young ovariectomized rats Zeitschrift für Ernährungswissenschaft 32, 121130.Google Scholar
Yuan, YV & Kitts, DD (1991) Confirmation of calcium absorption and femoral utilization in spontaneously hypertensive rats fed casein phosphopeptide supplemented diets Nutrition Research 11, 12571272.CrossRefGoogle Scholar