Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T02:47:12.340Z Has data issue: false hasContentIssue false

Effect of zinc deficiency on appetite and plasma amino acid concentrations in the rat

Published online by Cambridge University Press:  09 March 2007

J. C. Wallwork
Affiliation:
United States Department of Agriculture, Science and Education Administration, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, 58202, USA
G. J. Fosmire
Affiliation:
United States Department of Agriculture, Science and Education Administration, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, 58202, USA
H. H. Sandstead
Affiliation:
United States Department of Agriculture, Science and Education Administration, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, 58202, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Levels of zinc in liver and plasma of the Zn-depleted rats fluctuated with the feeding cycle and were significantly higher at the bottom than at the top of the cycle. As Zn deficiency became more severe fluctuations in plasma Zn diminished. Concentrations of Zn in liver, in contrast to levels in plasma and femur, were not markedly lowered by day 15.

2. In contrast to udlib.-fed (AL) and overnight-fasted (OF) controls, some pair-fed (PF) controls had elevated levels of Zn in liver and plasma.

3. Intakes of water and food were sigdicantly correlated in Zn-deficient rats. Packed cell volumes were significantly higher for Zn-depleted than for AL and PF rats.

4. Food intakes and plasma glucose concentrations were related in AL, OF and PF control rats but not in Zn-deficient rats.

5. At day 15 of Zn deficiency the order of total plasma amino acid concentrations in the groups of rats was AL > Zn-deficient > OF > PF. Many of the differences between the AL and OF groups for individual plasma amino acids also appeared in the Zn-deficient group at the top and bottom of the feeding cycle. Differences in individual amino acid conmntrations at the top and bottom of the feeding cycle tended to be opposite in the PF and the Zn-ddicient group. Levels of tyrosine and tryptophan in plasma were correlated (P ≶ 0.05) with the cyclic feeding pattern of the Zn-deficient group; however, the ratios tryptophan or tyrosine: sum of other large neutral amino acids did not correlate significantly with the eating habits of Zndeficient rats.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Allen, K. G. D., Klevay, L. M. & Springer, H. L. (1977). Nutr. Rep. int. 16, 227.Google Scholar
Anderson, G. H. (1977). Adv. Nutr. Res. 7, 145.CrossRefGoogle Scholar
Anderson, G. H. & Ashley, D. V. M. (1976). Proc. Can. Fedn Biol. Soc. 19, 24.Google Scholar
Anonymous (1978). Nutr. Rev. 36, 343.Google Scholar
Apgar, J. (1972). J. Nutr. 102, 343.CrossRefGoogle Scholar
Apgar, J. (1975). J. Nutr. 105, 1553.CrossRefGoogle Scholar
Ashley, D. V. M. & Anderson, G. H. (1977). Fedn Proc. Fedn Am. Socs exp. Biol. 36, 4665.Google Scholar
Bloxam, D. L. & Warren, W. H. (1974). Analyt. Biochem. 60, 621.CrossRefGoogle Scholar
Boquist, L. & Lernmark, A. (1969). Acta Path. Microbiol. scand. 76, 215.CrossRefGoogle Scholar
Burch, R. E., Williams, R. V., Hahn, H. K. J., Jetton, M. M. & Sullivan, J. F. (1975). Clin. Chem. 21, 568.CrossRefGoogle Scholar
Chesters, J. K. & Quarterman, J. (1970). Br. J. Nutr. 24, 1061.CrossRefGoogle Scholar
Curzon, G. & Knott, P. J. (1974). Br. J. Pharmacol. 50, 197.CrossRefGoogle Scholar
Cuthbertson, D. P., Fell, G. S., Smith, C. M. & Tilstone, W. J. (1972). Br. J. Surg. 59, 925.CrossRefGoogle Scholar
Denckla, W. D. & Dewey, H. K. (1967). J. Lab. clin. Med. 69, 160.Google Scholar
Doumas, B. T. & Biggs, H. G. (1972). In Standard Methods of Clinical Chemistry, Vol. 7, p. 175 [Copper, G. R., editor]. New York: Academic Press.Google Scholar
Duerre, J. A.Ford, K. M. & Sandstead, H. H. (1977). J. Nutr. 107, 1082.CrossRefGoogle Scholar
Falchuk, K. H., Hardy, C., Ulpino, L. & Vallee, B. L. (1977). Biochem. Biophys. Res. Commun. 77, 314.CrossRefGoogle Scholar
Fernstrom, J. D. & Faller, D. V. (1978). J. Neurochem. 30, 1531.CrossRefGoogle Scholar
Fernstrom, J. D., Faller, D. V. & Shabshelowitz, H. (1975). J. Neural Trans. 36, 113.CrossRefGoogle Scholar
Fernstrom, J. D., Larin, F. & Wurtman, R. J. (1973). Life Sci. 13, 517.CrossRefGoogle Scholar
Fernstrom, J. D. & Wurtman, R. J. (1971). Science N. Y. 174, 1023.CrossRefGoogle Scholar
Fosmire, G. J., Fosmire, M. A. & Sandstead, H. H. (1976). J. Nutr. 106, 1152.CrossRefGoogle Scholar
Fosmire, G. J. & Sandstead, H. H. (1977). Proc. Soc. exp. Biol. Med. 154, 351.CrossRefGoogle Scholar
Francesconi, R. P., Colter, R. & Mager, M. (1972). J. Nutr. 102, 597.CrossRefGoogle Scholar
Gibson, C. J. & Wurtman, R. 1. (1978). Life Sci. 22, 1399.CrossRefGoogle Scholar
Greeley, S. (1979). Marginal zinc nutriture in the pregnant rat: effects on certain aspects of metabolism. PhD Dissertation, Biochemistry Department, School of Medicine, University of North Dakota.Google Scholar
Griffith, P. R. & Alexander, J. C. (1972). Nutr. Rep. int. 6, 9.Google Scholar
Griffith, P. R. & Alexander, J. C. (1972). Nutr. Rep. int. 6, 9.Google Scholar
Henry, R. W. & Elmes, M. E. (1975). Br. Med. J. iv, 625.CrossRefGoogle Scholar
Hove, E., Elvehjem, C. A. & Hart, E. B. (1937). Am. J. Physiol. 119, 768.CrossRefGoogle Scholar
Hsu, J. M. & Anthony, W. L. (1970). J. Nutr. 100, 1189.CrossRefGoogle Scholar
Hsu, J. M., Anthony, W. L. & Buchanan, P. J. (1969 a). J. Nutr. 97, 279.CrossRefGoogle Scholar
Hsu, J. M., Anthony, W. L. & Buchanan, P. I. (1969 b). J. Nutr. 99, 425.CrossRefGoogle Scholar
Hsu, J. M., Kim, K. M. & Anthony, W. L. (1974). Adv. exp. Med. Biol. 48, 347.CrossRefGoogle Scholar
Hsu, J. M. & Woosely, R. L. (1972). J. Nutr. 102, 1181.CrossRefGoogle Scholar
Huber, A. M. & Gershoff, S. N. (1973). J. Nutr. 103, 1739.CrossRefGoogle Scholar
Kadish, A. H., Litle, R. L. & Sternberg, J. C. (1968). Clin. Chem. 14, 116.CrossRefGoogle Scholar
Luecke, R. W., Olman, M. E. & Baltzer, B. V. (1968). J. Nutr. 94, 344.CrossRefGoogle Scholar
Macapinlac, M. P., Pearson, W. N. & Darby, W. J. (1966). In Zinc Metabolism, p. 142 [Prasad, A. S. editor]. Springfield, Ill.: C. C. Thomas.Google Scholar
McClain, P. E., Wiley, E. R., Beecher, G. R., Anthony, W. L. & Hsu, J. M. (1973). Biochim. biophys. Acta 304, 457.CrossRefGoogle Scholar
McConnell, S. D. & Henkin, R. I. (1974). J. Nutr. 104, 1108.CrossRefGoogle Scholar
McKenzie, J. M., Fosmire, G. J. & Sandstead, H. H. (1975). J. Nutr. 105, 1466.CrossRefGoogle Scholar
Mills, C. F., Quarterman, J., Chesters, J. K., Williams, R. B. & Dalgarno, A. C. (1969). Am. J. clin. Nutr. 22, 1240.CrossRefGoogle Scholar
O'neal, R. M., Pla, G. W., Fox, M. R. S., Gibson, F. S. & Fry, B. E. Jr (1970). J. Nutr. 100, 491.CrossRefGoogle Scholar
Pardridge, W. M. (1977). J. Neurochem. 28, 103.CrossRefGoogle Scholar
Peng, Y. & Harper, A. E. (1970). J. Nutr. 100, 429.CrossRefGoogle Scholar
Possingham, J. V. (1956). Aust. J. biol. Sci. 9, 539.CrossRefGoogle Scholar
Prasad, A. S., Rabbani, P., Abbas, A., Bowersox, E. & Fox, M. R. S. (1978). Ann. intern. Med. 89, 483.CrossRefGoogle Scholar
Quarterman, J., Mills, C. F. & Humphries, W. R. (1966). Biochem. Biophys. Res. Commun. 25, 354.CrossRefGoogle Scholar
Spencer, H. & Samachson, J. (1970). In Trace Element Metabolism in Animals, p. 312 [Mills, C. F., editor]. Edinburgh: Livingstone.Google Scholar
Tagliamonte, A., Biggio, G., Vargiu, L. & Gessa, G. L. (1973). Life Sci. 12, 277.CrossRefGoogle Scholar
Terhune, M. W. & Sandstead, H. H. (1972). Science N. Y. 177, 68.CrossRefGoogle Scholar
Tews, J. K., Kim, Y.-W. L. & Harper, A. E. (1979). J. Nutr. 109, 304.CrossRefGoogle Scholar
Theuer, R. C. & Hoekstra, W. G. (1966). J. Nutr. 89, 448.CrossRefGoogle Scholar
Todd, W. R., Elvehjem, C. A. & Hart, E. B. (1934). Am. J. Physiol. 107, 146.CrossRefGoogle Scholar
Wacker, W. E. C. (1962). Biochemistry N. Y. 1, 859.CrossRefGoogle Scholar
Wegner, W. S. & Romano, A. H. (1963). Science N. Y. 142, 1669.CrossRefGoogle Scholar
Wilkins, P. J., Grey, P. C. & Dreosti, I. E. (1972). Br. J. Nutr. 27, 113.CrossRefGoogle Scholar
Wood, J. G. & Sibly, P. M. (1952). Aust. J. Sci. Res. 5B, 244.Google Scholar
Wurtman, R. J., Larin, F., Mostafapour, S. & Fernstrom, J. D. (1974). Science N. Y. 185, 183.CrossRefGoogle Scholar