Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T02:02:43.206Z Has data issue: false hasContentIssue false

Effect of Vitamin B12 deficiency on phosphatidylethanolamine methylation in rat liver

Published online by Cambridge University Press:  09 March 2007

B. Åkesson
Affiliation:
Department of Physiological Chemistry, Department of Neurology, Dalby Community Care Research Centre, University Hospital, Lund, Sweden
C. Fehling
Affiliation:
Department of Physiological Chemistry, Department of Neurology, Dalby Community Care Research Centre, University Hospital, Lund, Sweden
Margaretha JÄGerstad
Affiliation:
Department of Physiological Chemistry, Department of Neurology, Dalby Community Care Research Centre, University Hospital, Lund, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In vitamin B12 deficiency the activity of tetrahydropteroylglutamate methyltransferase (EC 2.1.1.13) is depressed and the synthesis of methionine is reduced. Because the methyl group of methionine is largely utilized for the methylation of phosphatidylethanolamine, we investigated the effects of vitamin B12 deficiency on phosphatidylcholine synthesis.

2. The incorporation of injected [14Clformaldehyde into liver phosphatidylcholine was reduced by approximately 50% in vitamin B12-deficient rats. Also the corresponding incorporation of 5-[14C]methyl-tetrahydrofolic acid tended to decrease. The findings are consistent with a lower conversion of these precursors to methionine.

3. The effect of the deficient methyl-group supply on phosphatidylcholine synthesis was also investigated by the injection of [14C]ethanolamine. The amount (%) of lipid-14C recovered in phosphatidylcholine was significantly reduced in vitamin B12 deficiency.

4. Chemical analysis of liver phospholipids showed that the vitamin B12-deficient rats had a higher proportion of phosphatidylethanolamine and a lower proportion of phosphatidylcholine, indicating that the impaired synthesis of phosphatidylcholine by methylation leads to changes in membrane phospholipid composition.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Acheampong-Mensah, D. & Feuer, G. (1974). Nutr. Rep. int. 10, 297.Google Scholar
Åkesson, B. (1977). Biochim. Biophys. Res. Commun. 76, 93.CrossRefGoogle Scholar
Arnstein, H.R.V. (1959). Biochem. J. 73, 23P.Google Scholar
Belfrage, P., Wiebe, T. & Lundquist, A. (1970). Scand. J. clin. Lab. Invest. 26, 53.CrossRefGoogle Scholar
Bjørnstad, P. & Bremer, J. (1966). J. Lipid Res. 7, 38.CrossRefGoogle Scholar
Blumenstein, J. (1964). Can. J. Biochem. Physiol. 42, 1183.Google Scholar
Bremer, J., Figard, P. H. & Greenberg, D. M. (1960). Biochim. biophys. Acta 43, 477.CrossRefGoogle Scholar
Brothers, V., O'neill Rowley, B. & Gerritsen, T. (1975). Archs Biophys. Biochem. 166, 475.CrossRefGoogle Scholar
Dickerman, H., Redfield, B. G. & Weissbach, H. (1964). J. biol. Chem. 239, 2545.CrossRefGoogle Scholar
Esko, J. D., Gilmore, J. R. & Glaser, M. (1977). Biochemistry, Easton 16, 1881.CrossRefGoogle Scholar
Fallon, H. J., Gertman, P. M. & Kemp, E. L. (1969). Biochim. biophys. Acta 187, 94.CrossRefGoogle Scholar
Fehling, C. & Jägerstad, M. (1978). Nutr. Metabl. 22, 90.CrossRefGoogle Scholar
Fehling, C., Jägerstad, M., Åkesson, B., Axelsson, J. & Brun, A. (1978). Br. J. Nutr. 39, 501.CrossRefGoogle Scholar
Fehling, C., Jägerstad, M. & Arvidson, G. (1978). Nutr. Metabl. 22, 82.CrossRefGoogle Scholar
Finkelstein, J. D., Kyle, W. E. & Harris, B. J. (1971). Archs Biochem. Biophys. 146, 84.CrossRefGoogle Scholar
Gawthorne, J. M. & Smith, R. M. (1974). Biochem. J. 142, 119.CrossRefGoogle Scholar
Glenn, J. L. & Austin, W. (1971). Biochim. biophys. Acta 231, 153.CrossRefGoogle Scholar
Haines, D. S. M. (1966). Can. J. Biochem. Physiol. 44, 45.Google Scholar
Kennedy, E. P. (1957). A. Rev., Biochem. 26, 119.CrossRefGoogle Scholar
Krebs, H. A., Hems, R. & Tyler, B. (1976). Biochem. J. 158, 341.CrossRefGoogle Scholar
Loughlin, R. E., Elford, H. L. & Buchanan, J. M. (1964). J. biol. Chem. 239, 2888.CrossRefGoogle Scholar
Natori, Y. (1963). J. biol. Chem. 238, 2075.CrossRefGoogle Scholar
Skurdal, D. N. & Cornatzer, W. E. (1975). Int. J. Biochem. 6, 579.CrossRefGoogle Scholar
Sundler, R. & Åkesson, B. (1975). J. biol. Chem. 250, 3359.CrossRefGoogle Scholar
Thompson, W., MacDonald, G. & Mookerjea, S. (1969). Biochim. biophys. Acta 176, 306.CrossRefGoogle Scholar
Tuma, D. J., Barak, A. J. & Sorrel, M. F. (1975). Biochem. Pharmac. 24, 1327.CrossRefGoogle Scholar
Turkki, P. R. & Silvestre, M. T. G. (1970). Nutr. Rep. Int. 2, 141.Google Scholar
Vidal, A. J. & Stokstad, E. L. R. (1974). Biochim. biophys. Acta 362, 245.CrossRefGoogle Scholar