Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T08:30:20.016Z Has data issue: false hasContentIssue false

Effect of the microbial lactase (EC 3.2.1.23) activity in yoghurt on the intestinal absorption of lactose: An in vivo study in lactase-deficient humans*

Published online by Cambridge University Press:  09 March 2007

Philippe Marteau
Affiliation:
INSERM U.290, Fonctions Intestinales, Métabolisme et Nutrition, Hôpital Saint-Lazare, 107 rue du Faubourg Saint-Denis, 75010, Paris
Bernard Flourie
Affiliation:
INSERM U.290, Fonctions Intestinales, Métabolisme et Nutrition, Hôpital Saint-Lazare, 107 rue du Faubourg Saint-Denis, 75010, Paris
Philippe Pochart
Affiliation:
Département de Microbiologie, Faculté de Pharmacie, Université Paris XI, Chatenay Malabry
Claude Chastang
Affiliation:
Département de Biostatistiques et Informatique Médicale, Hôpital Saint-Louis, Paris, France
Jehan-François Desjeux
Affiliation:
INSERM U.290, Fonctions Intestinales, Métabolisme et Nutrition, Hôpital Saint-Lazare, 107 rue du Faubourg Saint-Denis, 75010, Paris
Jean-Claude Rambaud
Affiliation:
INSERM U.290, Fonctions Intestinales, Métabolisme et Nutrition, Hôpital Saint-Lazare, 107 rue du Faubourg Saint-Denis, 75010, Paris
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Breath hydrogen excretion was measured in eight lactase (EC 3.2.1. 108)-deficient volunteers ingesting 18 g lactose in the form of milk, yoghurt and heated yoghurt. Total excess hydrogen excretion (area under curve) was significantly lower after yoghurt and heated yoghurt, than after milk: 103 (SE 29), 191 (SE 32), and 439 (SE 69) respectively (P < 0.001). The oro-caecal transit time of fermentable components from yoghurt and heated yoghurt (mainly lactose) was longer than that from milk: 165 (SE 17), 206 (SE 19), v. 103 (SE 19) min (P < 0.01). An intestinal perfusion technique was used in the same subjects after ingestion on two consecutive days of 18 g lactose in yoghurt and heated yoghurt. Significantly less lactose was recovered from the terminal ileum after yoghurt than after heated yoghurt meals: 1740 (SE 260) v. 2825 (SE 461) mg (P < 0.05), and approximately one-fifth of the lactase activity contained in yoghurt reached the terminal ileum. These findings indicate that more than 90% of the lactose in yoghurt is digested in the small intestine of lactase-deficient subjects and suggest that both the lactase activity contained in the viable starter culture and a slow oro–caecal transit time are responsible for this excellent absorption.

Type
Digestion, Absorption and Utilization of Nutrients
Copyright
Copyright © The Nutrition Society 1990

References

Asp, N. G., Berg, N. O., Dahlqvist, A., Jussila, J. & Salmi, H. (1971). The activity of three different small intestinal β-galactosidases in adults with and without lactase deficiency. Scandinavian Journal of Gastroenterology 6, 755762.CrossRefGoogle Scholar
Besnier, M. O., Bourlioux, P., Fourniat, J., Ducluzeau, R. & Aumaitre, A. (1983). Influence de l'ingestion de yogourt sur l'activité lactasique intestinale chez des souris axéniques ou holoxéniques. Annales de Microbiologie 134, 219230.Google Scholar
Bond, J. H. & Levitt, M. D. (1976). Quantitative measurement of lactose absorption. Gastroenterology 70, 10581062.CrossRefGoogle ScholarPubMed
Debongnie, J. C., Newcomer, A. D., McGill, D. B. & Phillips, S. F. (1979). Absorption of nutrients in lactase deficiency. Digestive Diseases and Sciences 24, 225231.CrossRefGoogle ScholarPubMed
Dewit, O., Pochart, P. & Desjeux, J. F. (1988). Breath hydrogen concentration and plasma glucose, insulin and free fatty acid levels after lactose, milk, fresh and heated yoghurt ingestion by healthy young adults with or without lactose malabsorption. Nutrition 4, 15.Google Scholar
Flourié, B., Florent, C., Jouany, J. P., Thivend, P., Etanchaud, F. & Rambaud, J. C. (1986). Colonic metabolism of wheat starch in healthy humans. Effects on fecal outputs and clinical symptoms. Gastroenterology 90, 111119.CrossRefGoogle ScholarPubMed
Gray, G. M. & Santiago, N. A. (1966). Disaccharide absorption in normal and diseased human intestine. Gastroenterology 51, 489498.CrossRefGoogle ScholarPubMed
Greenberg, N. A. & Mahoney, R. R. (1982). Production and characterization of β-galactosidase from Streptococcus thermophilus. Journal of Food Science 47, 18241829.CrossRefGoogle Scholar
Hydén, S. (1955). A turbidimetric method for the determination of high polyethylene glycols in biological materials. Annals of the Royal Agriculture College of Sweden 22, 139145.Google Scholar
Itoh, T., Ohhashi, M., Toba, T. & Adachi, S. (1980). Purification and properties of β-galactosidase from Lactobacillus bulgaricus. Milchwissenschaft 35, 593597.Google Scholar
Kolars, J. C., Levitt, M. D., Aouji, M. & Savaiano, D. A. (1984). Yoghurt: an autodigesting source of lactose. New England Journal of Medicine 310, 13.CrossRefGoogle ScholarPubMed
Lee, C. M. & Hardy, C. M. (1989). Cocoa feeding and human lactose intolerance. American Journal of Clinical Nutrition 49, 840844.CrossRefGoogle ScholarPubMed
Mahoney, R. R. (1985). Modification of lactose and lactose-containing dairy products with β-galactosidase. In Developments in Dairy Chemistry – 3, pp 69109 [Fox, P. F., editor]. London: Elsevier Applied Science Publishers.CrossRefGoogle Scholar
Martini, M. C., Bollweg, G. L., Levitt, M. D. & Savaiano, D. A. (1987). Lactose digestion by yoghurt b-galactosidase: influence of pH and microbial cell integrity. American Journal of Clinical Nutrition 45, 432436.CrossRefGoogle Scholar
Martini, M. C. & Savaiano, D. A. (1988). Reduced intolerance symptoms from lactose consumed during a meal. American Journal of Clinical Nutrition 47, 5760.CrossRefGoogle ScholarPubMed
Newcomer, A. D., McGill, D. B., Thomas, P. J. & Hofmann, A. F. (1975). Prospective comparison of indirect methods for detecting lactase deficiency. New England Journal of Medicine 293, 12321236.CrossRefGoogle ScholarPubMed
Nguyen, K. N., Welsh, J. D., Manion, C. V. & Ficken, V. J. (1982). Effect of fiber on breath hydrogen response and symptoms after oral lactose in lactose malabsorbers. American Journal of Clinical Nutrition 35, 13471351.CrossRefGoogle ScholarPubMed
Phillips, S. F. & Giller, J. (1973). The contribution of the colon to electrolyte and water conservation in man. Journal of Laboratory and Clinical Medicine 81, 733746.Google ScholarPubMed
Pochart, P., Dewit, O., Desjeux, J. F. & Bourlioux, P. (1989). Viable starter culture, β-galactosidase activity and lactose in the duodenum; after yoghurt ingestion in lactase-deficient humans. American Journal of Clinical Nutrition 49, 828831.CrossRefGoogle ScholarPubMed
Rambaud, J. C., Sraer, J. D., Vidon, N., Fabia, F.& Bernier, J. J. (1968). Absorption intestinale du glucose et du lactose chez l'homme. Etude de 24 sujets normaux par la technique de perfusion intestinale. Biologic Gastroentérologie 1, 6174.Google Scholar
Savaiano, D. A., Anouar, A. A. E., Smith, D. E. & Levitt, M. D. (1984). Lactose malabsorption from yoghurt, pasteurized yoghurt, sweet acidophilus milk, and cultured milk in lactase-deficent individuals. American Journal of Clinical Nutrition 40, 12191223.CrossRefGoogle ScholarPubMed
Solomons, N. W., Garcia-Ibanez, R. & Viteri, F. E. (1979). Reduced rate of breath hydrogen excretion with lactose tolerance tests in young children using whole milk. American Journal of Clinical Nutrition 32, 783786.CrossRefGoogle ScholarPubMed
Solomons, N. W., Guerrero, A. M. & Torun, B. (1985). Dietary manipulation of postprandial colonic lactose fermentation. I. Effect of solid food in a meal. American Journal of Clinical Nutrition 41, 199208.CrossRefGoogle ScholarPubMed
Welsh, J. D. & Hall, W. H. (1977). Gastric emptying of lactose and milk in subjects with lactose malabsorption. Digestive Diseases and Sciences 22, 10601063.CrossRefGoogle ScholarPubMed