Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T04:09:01.971Z Has data issue: false hasContentIssue false

Effect of the duration of malnutrition and of nutritional rehabilitation on blood glucose homeostasis and pancreatic hormones in rats

Published online by Cambridge University Press:  09 March 2007

Jean-Marc Dollet
Affiliation:
Unité de Recherches sur les Mécanismes de Régulation du Comportement Alimentaire, INSERM U 308, 38 rue Lionnois, 54000 Nancy, France Unité de Recherches sur la Nutrition et l'Alimentation INSERM U 1, Hôpital Bichat, 170 bvd Ney, 75877 Paris Cedex 18, France
Bernard Beck
Affiliation:
Unité de Recherches sur les Mécanismes de Régulation du Comportement Alimentaire, INSERM U 308, 38 rue Lionnois, 54000 Nancy, France
Jean-Pierre Max
Affiliation:
Unité de Recherches sur les Mécanismes de Régulation du Comportement Alimentaire, INSERM U 308, 38 rue Lionnois, 54000 Nancy, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. To study the efficiency of rehabilitation after different periods of protein–energy malnutrition, we used as a model preweaning malnourished rats. After weaning, male Wistar rats were fed on a protein-deficient diet (50 g casein/kg) ad lib. for the whole study (DR group) or rehabilitated with normal diet (180 g casein/kg; RR group) from weaning, week 0, or weeks 1, 3, 5, 8 and 16 thereafter.

2. Twelve animals from the DR group were killed at the beginning of each rehabilitation period. The twelve rehabilitated rats were killed after 2 weeks. Body-weight and epididymal adipose tissue weight, blood glucose, plasma immunoreactive insulin (IRI) and immunoreactive glucagon (IRG), and pancreatic contents of IRI and IRG were determined.

3. Food intake of RR rats rose significantly except during the last period where body-weight increased less than that during the previous periods. Fat-pad weights increased in the same manner in DR and RR groups.

4. Blood glucose fell and plasma IRG rose significantly without any change in plasma IRI after each rehabilitation period, except during the last period where blood glucose concentrations became stable. Pancreatic IRG and IRI showed the same type of response to those of the plasma.

5. All short-term rehabilitation periods were similarly efficient at producing catch-up growth. High insulin sensitivity of target cells was responsible for good recovery except after long-term malnutrition.

Type
Other Studies Relevant to Human Nutrition
Copyright
Copyright © The Nutrition Society 1988

References

Anthony, L. E. &, Faloona, G. R. (1974) Metabolism 39, 303306.CrossRefGoogle Scholar
Beck, B., Dollet, J. M., Max, J. P. &, Debry, G. (1983) Nutrition Research 3, 743748.CrossRefGoogle Scholar
Dollet, J. M., Beck, B., Max, J. P. &, Debry, G. (1987) British Journal of Nutrition 58, 415425.CrossRefGoogle Scholar
Dollet, J. M., Beck, B., Villaume, Ch., Max, J. P. &, Debry, G. (1985) Journal of Nutrition 115, 15811588.CrossRefGoogle Scholar
Edozien, J. C., Niehaus, N., Mar, M. H., Makaoui, T. &, Switzer, B. R. (1978) Journal of Nutrition 106, 16671676.Google Scholar
Edozien, J. C., Rahim Khan, M. A. &, Waslien, C. I. (1976) Diabetes 25, 949954.Google Scholar
Eisenstein, A. B., Strack, I., & Steiner, A. (1974) Metabolism 23, 1523.CrossRefGoogle Scholar
Haaga, J., Henrick, C., Test, K. &, Mason, J. (1985) WHO World Health Statistics Quarterly 38, 331347.Google Scholar
Heard, C. R. C. (1978) Diabetes 15, 7889.CrossRefGoogle Scholar
Jeanrenaud, B., Halimi, S. &, Van De Werve, G. (1985) In Diabetes/Metabolism Reviews, Vol. 1, pp. 261291 [Fronzo, De, editor]. New York: John Wiley and Sons.Google Scholar
Kababi, J. M., Eisenstein, A. B. &, Strack, I. (1976) Journal of Nutrition 106, 12471253.CrossRefGoogle Scholar
Nakano, K. &, Hara, H. (1979) Journal of Nutrition 109, 13901398.CrossRefGoogle Scholar
Okasaki, S., Matsueda, S., Ohnaka, M. &, Niiyama, Y. (1981) Nutrition Reports International 23, 471484.Google Scholar
Ozelci, A., Romsos, D. R. &, Leveille, G. A. (1978) Journal of Nutrition 108, 17241732.CrossRefGoogle Scholar
Penicaud, L., Rohner-Jeanrenaud, F. &, Jeanrenaud, B. (1986) American Journal of Physiology 250, E662E668.Google Scholar
Persson, B., Habte, D. &, Sterky, G. (1976) Acta Paediatrica Scandinavica 65, 329336.CrossRefGoogle Scholar
Robinson, H. M., Cocks, T., Korr, D. &, Picou, D. (1980) Pediatric Research 14, 2833.CrossRefGoogle Scholar
Robinson, H. M. &, Picou, D. (1977) Pediatric Research 11, 637640.CrossRefGoogle Scholar
Rozovski, S. J., Lewis, C. G. &, Cheng, M. (1982) Journal of Nutrition 112, 920927.CrossRefGoogle Scholar
Stewart, R. J. C., Sheppard, H., Preece, R. &, Waterlow, J. C. (1980) British Journal of Nutrition 43, 403412.CrossRefGoogle Scholar
Tafari, N., Naeye, R. L. &, Gobezie, A. (1980) British Journal of Obstetrics and Gynaecology 87, 222226.CrossRefGoogle Scholar
Turner, M. R. (1978) Proceedings of the Nutrition Society 37, 295299.CrossRefGoogle Scholar
Warren, M. A. &, Bedi, K. S. (1985) Journal of Anatomy 191, 6575.Google Scholar
Young, N. R., Vilaire, G., Newberne, J. M. &, Wilson, R. B. (1973) Journal of Nutrition 103, 720729.CrossRefGoogle Scholar