Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T01:11:16.121Z Has data issue: false hasContentIssue false

Effect of some gastrointestinal hormones on motor and electrical activity of the digestive tract in the conscious cat

Published online by Cambridge University Press:  09 March 2007

Maurice Rochei
Affiliation:
Laboratoire de Physiologie Appliquée et Pharmacologie, Université de Savoie, BP 1104. 73011, Chambéry, France
Monique Descroix-Vagne
Affiliation:
INSERM, Unité, 45, Hôpital E. Herriot, Lyon, France
Sonia Benouali
Affiliation:
Laboratoire de Physiologie Appliquée et Pharmacologie, Université de Savoie, BP 1104. 73011, Chambéry, France
Jean-Alain Chayvialle
Affiliation:
INSERM, Unité, 45, Hôpital E. Herriot, Lyon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three peptides structurally related to gastrin and known to be full agonists of antral motility in the conscious cat, pentagastrin (PG), cholecystokinin (CCK) and synthetic octapeptide of cholecystokinin (OP-CCK), were compared in relation to antral and duodenal electrical activity. They induced the same antral effect in eliciting an increase in the basal electrical rhythm (BER) and a short-lasting decrease in the frequency of the bursts of spikes. The electrical changes were correlated with lumen pressure changes measured in parallel, consisting of a decrease in the frequency of high-amplitude peaks and an increase in low-amplitude peaks. The additive effect of PG and CCK shows that the peptides are full agonists for antral electrical activity, as they are for antral motility and acid secretion. In contrast to the antrum, the three peptides increased the frequency of the duodenal spike bursts, CCK and OP-CCK decreased the BER frequency, while PG increased BER slightly. The increase in antral and duodenal BER obtained after a beef-liver meal, which produced a large endogenous gastrin release, suggests a major role for gastrin in antral motility induced by feeding, at least in the cat.

Type
Gastrointestinal Hormones and Intestinal Motility
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Bueno, L. & Garcia-Villar, R. (1979). Secretory and motor activities at the gastroduodenal junction in dogs. Veterinary Science Communications 3, 249256.CrossRefGoogle Scholar
Chikh-lssa, A. R., Scarpignato, C., Collinet, M., Chayvialle, J. A. & Vagne, M. (1989). Dual effect of bombesin and gastrin releasing peptide on gastric emptying in conscious cats. Peptides 10, 281287.CrossRefGoogle Scholar
Couturier, D., Rozé, C., Vasconcellos, D., Accary, J. P. & Debray, C. (1973). Effect of acid in stomach and duodenum upon the gastric myoelectrical activity in man. Digestion 9, 502513.CrossRefGoogle ScholarPubMed
Desvigne, C., Gelin, M. L., Vagne, M. & Roche, M. (1980). Effect of Cholecystokinin and Pentagastrin on motility and gastric secretion in the cat. Digestion 20, 265276.CrossRefGoogle ScholarPubMed
Dooley, C. P. & Valenzuela, J. E. (1988). Antropyloroduodenal activity during gastric emptying of liquid meals in humans. American Journal Of Physiology 255, G93G98.Google ScholarPubMed
Hunter, W. M. & Greenwood, F. C. (1962). Preparation of iodine-131 labelled human growth hormone with high specific activity. Nature 194, 495496.CrossRefGoogle ScholarPubMed
Kwong, N. K., Brown, B. H., Whittaker, G. E. & Duthie, H. L. (1972). Effects of Gastrin I, Secretin and Cholecystokinin-Pancreozymin on the electrical activity, motor activity and acid output of the stomach in man. Scandinavian Journal of Gastroenterology 7, 161170.Google ScholarPubMed
Raybould, H. E. & Taché, Y. (1988). Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats. American Journal of Physiology 255, G242G246.Google Scholar
Roche, M., Bueno, L., Vagne, M. & Blourde, C. (1982). Patterns of electrical activity in the digestive tract of the conscious cat. British Journal of Nutrition 48, 129135.CrossRefGoogle ScholarPubMed
Ruppin, H. & Domschke, W. (1980). Gastrointestinal hormones and motor function of the gastrointestinal tract. In Gastrointestina1 Hormones, pp. 587612 [Jerzy Glass, G. B., editor]. New York: Raven Press.Google Scholar
Smith, G. T., Moran, T. H., Coyle, J. T., Kuhar, M. J., O'Donahue, T. L. & McHugh, P. R. (1984),. Anatomic localization of cholecystokinin receptors to the pyloric sphincter. American Journal of Physiology, 246, R127R130.Google Scholar
Strunz, U. T. & Grossman, M. I. (1977). In Nerves of the Gut, pp. 233245 [Brooks, F. P. and Evers, P. W., editors]. Thorofare, N.J.: C. B. Slack Inc.Google Scholar
Thomas, J. E. (1941). An improved cannula for gastric and intestinal fistulas. Proceedings of the Society for Experimental Biology and Medicine 46, 359364.Google Scholar
Vagne, M., Gelin, M. L., McDonald, T. J., Chayvialle, J. A. & Minaire, Y. (1982). Effect of Bombesin on gastric secretion and motility in the cat. Digestion 24, 513.CrossRefGoogle ScholarPubMed
Vagne, M., Collinet, M., Cuber, J. C., Bernard, C., Chayvialle, J. A., McDonald, T. J. & Mutt, V. (1987). Effect of porcine Gastrin Releasing Peptide on gastric secretion and motility and the release of hormonal peptides in conscious cats. Peptides 8, 423430.CrossRefGoogle ScholarPubMed
Way, L. (1971). Effect of cholecystokinin and caerulein on gastric secretion in cats. Gastroenterology 60, 560565.CrossRefGoogle ScholarPubMed
Wingate, D. L., Pearce, E. A., Hutton, M., Dand, A., Thompson, H. H. & Wunsch, E. (1978). Quantitative comparison of the effects of cholecystokinin, secretin and pentagastrin on gastrointestinal myoelectric activity in the conscious fasted dog. Gut 19, 593601.CrossRefGoogle ScholarPubMed