Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T12:55:16.183Z Has data issue: false hasContentIssue false

The effect of soluble- and insoluble-fibre supplementation on post-prandial glucose tolerance, insulin and gastric inhibitory polypeptide secretion in healthy subjects

Published online by Cambridge University Press:  09 March 2007

L. M. Morgan
Affiliation:
Department of Biochemistry, University of Surrey, Guildford GU2 5XH, Surrey
J. A. Tredger
Affiliation:
Department of Biochemistry, University of Surrey, Guildford GU2 5XH, Surrey
J. Wright
Affiliation:
Department of Biochemistry, University of Surrey, Guildford GU2 5XH, Surrey
V. Marks
Affiliation:
Department of Biochemistry, University of Surrey, Guildford GU2 5XH, Surrey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Six healthy non-obese male subjects were given three test meals containing 100 g carbohydrate and 1.5 g soluble paracetamol, supplemented on one occasion with 10 g guar gum and on another with 10 g sugarbeet fibre. A further six subjects were given the same test meal supplemented on one occasion with 10 g soya-bean-cotyledon fibre and on another, 5 g glucomannan. Venous blood samples were taken before, and at intervals for 180 min following the meal, and analysed for insulin, gastric inhibitory polypeptide (GIP) and paracetamol (as an index of gastric emptying). Arterialized blood samples were taken and analysed for glucose. Meal supplementation with both guar gum and sugar-beet fibre improved glucose tolerance, but circulating glucose levels were unaffected by the addition of either soya-bean-cotyledon fibre or glucomannan to the meals. Supplementation with guar gum and glucomannan lowered post-prandial insulin levels. Insulin levels were enhanced by addition of soya-bean-cotyledon fibre to the meal and unaffected by sugar-beet fibre. Post-prandial GIP levels were lowered in the guar–gum–supplemented meal and augmented with sugar-beet fibre supplementation. Addition of glucomannan and soya-bean-cotyledon fibre did not affect circulating GIP levels. The study failed to confirm previous reports of improved glucose tolerance following glucomannan and soya-bean-cotyledon fibre supplementation. The failure of sugar-beet fibre to reduce post-prandial insulin secretion despite improved glucose tolerance may be due to the observed increased secretion of GIP. The increased insulin levels seen following soya-bean-cotyledon fibre supplementation cannot be attributed either to changes in glucose tolerance, GIP secretion or gastric emptying.

Type
Hormones and Metabolism
Copyright
Copyright © The Nutrition Society 1990

References

Aspinall, G. O., Begbie, R. & McKay, J. E. (1967). Polysaccharide components of soybeans. Cereal Science Today 12, 224226.Google Scholar
Doi, K., Matsuura, M., Kawara, A. & Baba, S. (1979). Treatment of diabetics with glucomannan (konjac mannan). Lancet i, 987.CrossRefGoogle Scholar
Doi, K., Matsuura, M., Kawara, A., Ama, R. U. & Baba, S. (1981). Effect of glucomannan (konjac powder) on glucose and lipid metabolism in normal and diabetic subjects. In Proceedings of the Third Symposium on Diabetes Mellitus in Asia & Oceana, pp. 306312 [Melish, J. S., Hanna, J. and Baba, S., editors]. Amsterdam: Elsevier.Google Scholar
Hagandar, B. (1987). Fibre and the diabetic diet. Acta Medica Scandinavica 716, 155.Google Scholar
Hagandar, B., Asp, N. G., Efendic, S., Nilsson-Ehle, P., Lundquist, I. & Schersten, B. (1987). Beet fibre in the diet. Scandinavian Journal of Gastroenterology 22, Suppl. 129, 284.Google Scholar
Hallworth, M. J. (1983). Enzymic method for acetaminophen adapted to a centrifugal analyser. Clinical Chemistry 29, 21232124.CrossRefGoogle Scholar
Holt, S., Heading, R. C., Carter, D. C., Prescott, L. F. & Tothill, P. (1979). Effect of gel fibre on gastric emptying and absorption of glucose and paracetamol. Lancet i, 636639.CrossRefGoogle Scholar
Jenkins, D. J. A., Leeds, A. R., Gassull, M. A., Cochet, B. & Alberti, K. G. M. M. (1977 b). Decrease in postprandial insulin and glucose concentrations by guar and pectin. Annals of Internal Medicine 86, 2023.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A., Thorne, M. J. & Taylor, R. H. (1984). Slowly digested carbohydrate food improves impaired carbohydrate tolerance in patients with cirrhosis. Clinical Science 66, 649657.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A., Wolever, T. M. S., Hockaday, T. D. R., Leeds, A. R., Howarth, R., Bacon, S., Apling, E. C. & Dilawari, J. (1977 a). Treatment of diabetes with guar gum. Lancet ii, 779780.CrossRefGoogle Scholar
Kreymann, B., Williams, G., Ghatei, M. A. & Bloom, S. R. (1987). Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet ii, 13001304.CrossRefGoogle Scholar
Leeds, A. R., Gassull, M. A., Metz, G. L. & Jenkins, D. J. A. (1975). Food: influence of form on absorption. Lancet ii, 1213.CrossRefGoogle Scholar
Morgan, L. M. (1985). Use of guar in the treatment of diabetics. In Diabetes 1985, pp. 831835 [Serrano-Rios, M. and Lefebvre, P. J., editors]. Amsterdam: Elsevier.Google Scholar
Morgan, L. M., Goulder, T. J., Tsiolakis, D., Marks, V. & Alberti, K. G. M. M. (1979). The effect of unabsorbable carbohydrate on gut hormones. Diabetologia 17, 8589.CrossRefGoogle ScholarPubMed
Morgan, L. M., Morris, B. A. & Marks, V. (1978). Radioimmunoassay of gastric inhibitory polypeptide. Annals of Clinical Biochemistry 15, 172177.CrossRefGoogle ScholarPubMed
Morgan, L. M., Tredger, J. A., Hampton, S. M., French, A. P., Peake, J. C. F. & Marks, V. (1988). The effect of dietary modification and hyperglycaemia on gastric emptying and gastric inhibitory polypeptide (GIP) secretion. British Journal of Nutrition 60, 2937.CrossRefGoogle ScholarPubMed
Morgan, L. M., Tredger, J. A., Madden, A., Kwasowski, P. & Marks, V. (1985). The effect of guar-gum on carbohydrate, fat and protein stimulated gut hormone secretion. British Journal of Nutrition 53, 467475.CrossRefGoogle ScholarPubMed
Rainbird, A. L. & Low, A. G. (1986). Effect of guar gum on gastric emptying in growing pigs. British Journal of Nutrition 55, 8798.CrossRefGoogle ScholarPubMed
Rainbird, A. L., Low, A. G. & Sambrook, I. E. (1982). Lack of effect of guar gum on gastric emptying in pigs. Proceedings of the Nutrition Society 39, 42A.Google Scholar
Schweizer, T. F., Bekhechi, A. R., Koellreutter, B., Reimann, S., Pometta, D. & Bron, B. A. (1983). Metabolic effects of dietary fibre from dehulled soybeans in humans. American Journal of Clinical Nutrition 38, 111.CrossRefGoogle ScholarPubMed
Tredger, J. A., Morgan, L. M., Peake, J. & Marks, V. (1984). Effect of guar gum on the rate of gastric emptying in human subjects. Regulatory Peptides 9, 350.CrossRefGoogle Scholar
Trowell, H. C. (1972). Ischaemic heart disease and dietary fibre. American Journal of Clinical Nutrition 25, 926932.CrossRefGoogle Scholar
Tsai, A. C., Mott, E. L., Owen, G. M., Bennick, M. R., Lo, G. S. & Steinke, F. H. (1983). Effects of soy polysaccharide on gastro-intestinal functions, nutrient balance, steroid excretions, glucose tolerance, serum lipids and other parameters in humans. American Journal of Clinical Nutrition 38, 504511.CrossRefGoogle Scholar
Tsai, A. C., Vinik, A. I., Lusichak, A. & Lo, G. S. (1987). Effects of soy polysaccharide on post-prandial plasma glucose, insulin, glucagon, pancreatic polypeptide, somatostatin and triglyceride in obese diabetic patients. American Journal of Clinical Nutrition 45, 596601.CrossRefGoogle Scholar
Wilmshurst, P. & Crawley, J. C. W. (1980). The measurement of gastric transit time in obese subjects using 24Na and the effects of energy content and guar gum on gastric emptying and satiety. British Journal of Nutrition 44, 16.CrossRefGoogle ScholarPubMed