Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T17:14:12.307Z Has data issue: false hasContentIssue false

The effect of shearing on the energy metabolism of the pregnant ewe

Published online by Cambridge University Press:  09 March 2007

M. E. Symonds
Affiliation:
Department of Physiology & Biochemistry, University of Reading, Whiteknights, Reading RG6 2AJ
M. J. Bryant
Affiliation:
Departments of Agriculture, University of Reading, Whiteknights, Reading RG6 2AJ
M. A. Lomax
Affiliation:
Department of Physiology & Biochemistry, University of Reading, Whiteknights, Reading RG6 2AJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Metabolizable energy (ME) intakes, heat production, non-protein respiratory quotient (NPRQ) and the plasma concentrations of glucose, non-esterified fatty acids (NEFA), 3-hydroxybutyrate, insulin, growth hormone (SH) and cortisol were measured in shorn and unshorn pregnant ewes.

2. Lamb birth-weight was 17% higher from shorn ewes despite similar ME intakes in the two groups. Shearing resulted in a significant decrease in the digestibility of dry matter and energy.

3. Both shorn and unshorn ewes were found to be in positive nitrogen balance and negative energy balance. Heat production was 28% higher in shorn ewes. This increase in heat production in the shorn group could be completely accounted for by an increase in the oxidation of fatty acids as measured using the NPRQ values.

4. Despite an apparent increase in the use of fat as an energy source there were no effects of shearing on the mean plasma concentrations of NEFA, 3-hydroxybutyrate, GH and cortisol.

5. Measurements made at 1 h intervals for 24 h indicated a tendency for the concentrations of glucose to be increased and insulin decreased in shorn ewes, particularly, between 6 and 11 h after feeding.

6. It is concluded that shearing pregnant ewes at 8 weeks before lambing results in a chronic increase in energy requirements which are met by oxidizing body fat depots. The cold stress induced by shearing may also inhibit insulin secretion resulting in increased plasma glucose concentrations. The effects of shearing on energy metabolism in the ewe are discussed in relation to the nutrient supply for the developing fetus.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Adalsteinsson, S. (1972). Acta Agriculturae Scandinavica 22, 9396.CrossRefGoogle Scholar
Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock, pp. 115119. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Annison, E. F., Linzell, J. L., Fazakerley, S. & Nichols, B. W. (1967). Biochemical Journal 102, 637747.Google Scholar
Austin, A. R. & Young, N. E. (1977). Veterinary Record 100, 527529.Google Scholar
Bassett, J. M. & Alexander, G. (1971). Biology of the Neonate 17, 112125.CrossRefGoogle Scholar
Bergmeyer, H. V. & Bernt, E. (1974). In Methods of Enzymatic Analysis, vol. 3, pp. 12051215. [Bergmeyer, H. V., editor]. Weinheim: Verlag Chemie.Google Scholar
Brody, S. (1945). Bioenergetics and Growth, pp. 307313. New York: Hafner Publishing Co.Google Scholar
Brouwer, E. (1965). In Energy Metabolism. Publication of the European Association for Animal Production no. 11, pp. 441443 [Blaxter, K. L., editor]. London: Academic Press.Google Scholar
Cammell, S. B., Beever, D. E., Skelton, K. V. & Spooner, M. C. (1981). Laboratory Practice 30, 115119.Google Scholar
Christopherson, R. J., Thompson, J. R., Hammond, V. A. & Hills, G. A. (1978). Canadian Journal of physiology and Pharmacology 56, 490496.CrossRefGoogle Scholar
Driver, P., Forbes, J. M. & Scanes, C. G. (1979). Journal of Physiology 290, 399411.Google Scholar
Eayres, S. M., Lomax, M. A. & Bryant, M. J. (1985). Proceedings of the Nutrition Society 44, 62A.Google Scholar
Graham, A. D. & Phillips, G. D. (1981). Canadian Journal of Animal Science 61, 919924.Google Scholar
Graham, N. McC., Wainman, F. W., Blaxter, K. L. & Armstrong, D. G. (1958). Journal of Agricultural Science 52, 1324.CrossRefGoogle Scholar
Hart, I. C., Flux, D. S., Andrews, P. & McNeilly, A. S. (1975). Hormone and Metabolic Research 7, 3540.CrossRefGoogle Scholar
Hay, W. W., Sparks, J. W., Wilkening, R. B., Battaglia, F. C. & Meschia, G. (1983). American Journal of Physiology 245, E347E350.Google Scholar
Hove, K. & Blom, A. K. (1976). Acta Endocrinologica 82, 544552.Google Scholar
Kennedy, P. M., Young, B. A. & Christopherson, R. J. (1977). Journal of Animal Science 45, 10841090.CrossRefGoogle Scholar
Maund, B. A. (1980). Animal Production 30, 481, Abstr.Google Scholar
Mellor, D. J., Slater, J. S. & Matheson, I. C. (1975). Research in Veterinary Science 18, 219221.CrossRefGoogle Scholar
Morgan, H. & Broadbent, J. S. (1980). Animal Production 30, 476, Abstr.Google Scholar
Olsen, J. D. & Trenkle, A. (1973). American Journal of Veterinary Research 34, 747751.Google Scholar
Pethick, D. W. & Lindsay, D. B. (1982). British Journal of Nutrition 48, 549563.Google Scholar
Pethick, D. W., Lindsay, D. B., Barker, P. J. & Northrop, A. J. (1983). British Journal of Nutrition 49, 129142.Google Scholar
Russell, A. J. F. (1984). Livestock Production Science 11, 429436.CrossRefGoogle Scholar
Rutter, W., Laird, T. R. & Broadbent, P. J. (1971). Animal Production 13, 329336.Google Scholar
Rutter, W., Laird, T. R. & Broadbent, P. J. (1972). Animal Production 14, 127130.Google Scholar
Sasaki, Y. & Takahashi, H. (1980). Journal of Physiology 306, 323335.CrossRefGoogle Scholar
Symonds, M. E., Bryant, M. J. & Lomax, M. A. (1985 a). Proceedings of the Nutrition Society 44, 53A.Google Scholar
Symonds, M. E., Bryant, M. J. & Lomax, M. A. (1985 b). In Substrate and Energy Metabolism in Man, p. A22. [Garrow, J. S. and Halliday, D., editors]. London: John Libbey.Google Scholar
Tindal, J. S., Knaggs, G. S., Hart, I. C. & Blake, L. A. (1978). Journal of Endocrinology 76, 333346.Google Scholar
Thompson, G. E., Bassett, J. M. & Bell, A. E. W. (1978). British Journal of Nutrition 39, 219226.Google Scholar
Thompson, G. E., Bassett, J. M., Samson, D. E. & Slee, J. (1982). British Journal of Nutrition 48, 5964.CrossRefGoogle Scholar
Tissier, M., Theriez, M., Purroy, A. & Brelurut, A. (1980). In Energy Metabolism, pp. 329–33. [Mount, L. E., editor]. London: Butterworths.Google Scholar
Weeks, T. E. C., Sasaki, Y. & Tsuda, T. (1983). American Journal of Physiology 244, E335E345.Google Scholar
Westra, R. & Christopherson, R. J. (1976). Canadian Journal of Animal Science 56, 699708.Google Scholar
Williamson, D. H., Mellanby, J. & Krebs, H. A. (1962). Biochemical Journal 82, 9096.Google Scholar