Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T11:29:39.603Z Has data issue: false hasContentIssue false

The effect of retinol and retinoic acid on physiological and biochemical changes in retinol-deficient rats

Published online by Cambridge University Press:  25 March 2008

R. F. Krause
Affiliation:
Department of Biochemistry, West Virginia University Medical Center, Morgantown, West Virginia 26506, USA
K. C. Beamer
Affiliation:
Department of Biochemistry, West Virginia University Medical Center, Morgantown, West Virginia 26506, USA
A. M. Mccormick
Affiliation:
Department of Biochemistry, West Virginia University Medical Center, Morgantown, West Virginia 26506, USA
R. J. Canterbury
Affiliation:
Department of Biochemistry, West Virginia University Medical Center, Morgantown, West Virginia 26506, USA
G. P. Tryfiates
Affiliation:
Department of Biochemistry, West Virginia University Medical Center, Morgantown, West Virginia 26506, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of retinol and retinoic acid supplementation of retinol-deficient rats were studied for a variety of metabolic processes shown to be affected by retinol deficiency.

2. Retinol-deficient rats were found to have decreased body-weight, liver and testes weights, a degeneration of testicular germinal cells, an increased incorporation of labelled choline into liver and testes phospholipids, an increased protein synthetic activity (in vitro) of liver ribosomes, an increased transfer-RNA methyltransferase activity in liver and a decreased activity in testes, an increased DNA content of testicular nuclei, and a decreased uptake of [3H]thymidine by testicular nuclear DNA.

3. In retinol-deficient rats supplemented for 8 weeks with retinol these changes were reversed, measurements returning to control levels.

4. In retinol-deficient rats supplemented for 8 weeks with retinoic acid all changes were reversed except those in the testes.

5. Testicular signs of retinol deficiency appeared to be delayed when retinoic acid was added to the retinol-deficient diet of weanling rats. This suggests a sparing action of retinoic acid on the rat's utilization of retinol.

6. Suggestions are offered as to why retinoic acid will support growth and development but not spermatogenesis in the rat.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Ahluwalia, B. & Bieri, J. G. (1971). J. Nutr. 101, 141.CrossRefGoogle Scholar
Ahluwalia, B., Devi, A. & Clark, J. F. J. (1973). Fedn Proc. Fedn Am. Socs exp. Biol. 32, 947.Google Scholar
Bieri, J. G. & Prival, E. L. (1966). J. Nutr. 89, 55.CrossRefGoogle Scholar
Blobel, G. & Potter, V. R. (1966). Science, N.Y. 154, 1662.CrossRefGoogle Scholar
Blobel, G. & Potter, V. R. (1967). J. molec. Biol. 26, 279.CrossRefGoogle Scholar
Burton, K. (1968). Meth. Enzym. 12B, 163.CrossRefGoogle Scholar
Cameron, I. L. (1968). In Methods in Cell Physiology Vol. 3, p. 263 [Prescott, D. M., editor] New York: Academic Press Inc.Google Scholar
Chen, P. S., Yoribara, T. Y. & Warner, H. (1956). Analyt. Chem. 28, 1756.CrossRefGoogle Scholar
Dowling, J. E. & Wald, G. (1960). Proc. Natn. Acad. Sci. U.S.A. 46, 587.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Harris, C. L. (1970). Sulfur-deficient transfer ribonucleic acid. PhD Thesis, University of Illinois, Chicago, Illinois.Google Scholar
Hayes, K. C. (1971). Nutr. Rev. 29, 3.CrossRefGoogle Scholar
Hirsch, J. & Ahrens, E. H. jr (1958). J. biol. Chem. 233, 311.CrossRefGoogle Scholar
Howell, J. McC., Thompson, J. N. & Pitt, G. A. J. (1963). J. Reprod. Fert. 5, 159.CrossRefGoogle Scholar
Kerr, S. J. (1970). Biochemistry, Easton 9, 690.CrossRefGoogle Scholar
Krause, R. F. & Beamer, K. C. (1972). J. Nutr. 102, 1465.CrossRefGoogle Scholar
Krause, R. F., Beamer, K. C. & Lawrence, C. (1969). Am. J. din. Nutr. 22, 27.CrossRefGoogle Scholar
Krause, R. F., Beamer, K. C. & Plow, J. H. (1971). J. Nutr. 101, 161.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Mandel, L. R. & Borek, E. (1961). Biochem. biophys. Res. Commun. 6, 138.CrossRefGoogle Scholar
Mans, R. J. & Novelli, G. D. (1961). Archs Biochem. Biophys. 94, 48.CrossRefGoogle Scholar
Marmur, J. (1961). J. molec. Biol. 3, 208.CrossRefGoogle Scholar
Martin, T. E., Rolleston, F. S., Low, R. B. & Wool, I. G. (1969). J. molec. Biol. 43, 135.CrossRefGoogle Scholar
Mason, K. E. (1926). J. exp. Zool. 45, 159.CrossRefGoogle Scholar
Moore, T. (1957). Vitamin A p. 282. Amsterdam: Elsevier.Google Scholar
Neeld, J. B. & Pearson, W. N. (1963). J. Nutr. 79, 454.CrossRefGoogle Scholar
Rapoport, B. N., Kuznetsova, Z. A. & Dubrova, N. B. (1972). Uchen. Zap. gorkov. gos. Univ. 140, 129.Google Scholar
Rutter, W. J., Pictet, R. L. & Morris, P. W. (1973). A. Rev. Biochem. 42, 601.CrossRefGoogle Scholar
Sundaresan, P. R. (1972). J. scient. lind. Res. 31, 581.Google Scholar
Tryfiates, G. P. (1969). Biochim. biophys. Acta 174, 779.CrossRefGoogle Scholar
Tryfiates, G. P. (1971). Biochem. Pharmac. 20, 1669.CrossRefGoogle Scholar
Tryfiates, G. P. & Krause, R. F. (1971 a). Proc. Soc. exp. Biol. Med. 136, 946.CrossRefGoogle Scholar
Tryfiates, G. P. & Krause, R. F. (1971 b). Life Sci. 10, 1097.CrossRefGoogle Scholar
Von Ehrenstein, G. (1967). Meth. Enzym. 12, 588.CrossRefGoogle Scholar
Zile, M. & DeLuca, H. F. (1968). J. Nutr. 94, 302.CrossRefGoogle Scholar