Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T02:32:02.643Z Has data issue: false hasContentIssue false

The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine in the albino rat

Published online by Cambridge University Press:  25 March 2008

A. W. Cripps
Affiliation:
Department of Veterinary Medicine, University of Sydney, Sydney, NSW 2006 Australia.
V. J. Williams
Affiliation:
Department of Veterinary Medicine, University of Sydney, Sydney, NSW 2006 Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Food consumption, live weight, anatomical measurements on the gut organs and the absorptive capacity of the small intestine for L-leucine and D(+)-glucose were made on virgin (control), pregnant and lactating albino rats.

2. Food intake increased by approximately 60% during pregnancy and a further 250% during lactation.

3. Pregnancy did not markedly influence the gross anatomy of the gastrointestinal tract. There was evidence for increased villus height and percentage water in the small intestine and for increased length of the colon during pregnancy.

4. During lactation, the alimentary canal progressively increased in weight and size. It partially regressed following weaning.

5. All anatomical measurements, except the length of the small intestine, completely regressed to control values within 20 d of weaning. The increased intestinal length had not completely regressed by day 30 post-weaning.

6. No significant change was observed in absolute absorption of glucose or leucine during pregnancy.

7. Absolute absorption of leucine and of glucose was increased during lactation. Greatest absorption occurred on the 10th day of lactation.

8. Results for absorption of leucine and glucose per unit length indicated that the ability of the mucosal cells to absorb or the number of absorptive cells/mm had changed during lactation and the post-lactation periods.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Addis, T. (1932). Am. J. Physiol. 99, 417.CrossRefGoogle Scholar
Anderson, R. R. & Turner, C. W. (1963). Proc. Soc. exp. Biol. Med. 113, 334.CrossRefGoogle Scholar
Boyne, A. W., Chalmers, M. I. & Cuthbertson, D. P. (1953). Hoppe-Seyler's Z. physiol. Chem. 295, 424.CrossRefGoogle Scholar
Boyne, R., Fell, B. F. & Robb, I. (1966). J. Physiol., Lond. 183, 570.CrossRefGoogle Scholar
Cairnie, A. B. & Bentley, R. E. (1967). Expl Cell Res. 46, 428.CrossRefGoogle Scholar
Campbell, R. M. & Fell, B. F. (1964). J. Physiol., Lond. 171, 90.Google Scholar
Cole, H. H. & Hart, G. H. (1938). Am. J. Physiol. 123, 589.CrossRefGoogle Scholar
Cotes, P. M. & Cross, B. A. (1954). J. Endocr. 10, 363.Google Scholar
Craft, I. L. (1970). Clin. Sci. 38, 287.Google Scholar
Dowling, R. H., Riecken, E. O., Laws, J. W. & Booth, C. C. (1967). Clin. Sci. 32, 1.Google Scholar
Dubowski, K. M. (1962). Clin. Chem. 8, 215.CrossRefGoogle Scholar
Dugas, M. C., Hazelwood, R. L. & Lawrence, A. L. (1970). Proc. Soc. exp. Biol. Med. 135, 127.CrossRefGoogle Scholar
Fell, B. F. (1972). Wld Rev. Nutr. Diet. 14, 180.Google Scholar
Fell, B. F., Smith, K. A. & Campbell, R. M. (1963). J. Path. Bact. 85, 179.CrossRefGoogle Scholar
Grosvenor, C. E. & Turner, C. W. (1958). Proc. Soc. exp. Biol. Med. 99, 517.Google Scholar
Hawk, P. B., Oser, B. L. & Summerson, W. H. (1956). Practical Physiological Chemistry p. 543. London: Churchill.Google Scholar
Larralde, J. & Fernandez-Otero, P. (1968). Revta esp. Fisiol. 24, 49.Google Scholar
Larralde, J., Fernandez-Otero, P. & Gonzalez, M. (1966). Nature, Lond. 209, 1356.CrossRefGoogle Scholar
Levin, R. J. (1969). J. Endocr. 45, 315.Google Scholar
Levin, R. J. & Smyth, D. H. (1963). J. Physiol., Lond. 169, 755.Google Scholar
McDonald, P., Edwards, R. A. & Greenhalgh, J. F. D. (1971). Animal Nutrition p. 156. Edinburgh: Oliver and Boyd.Google Scholar
Matthews, D. M., Craft, I. L., Geddes, D. M., Wise, I. J. & Hyde, C. W. (1968). Clin. Sci. 35, 415.Google Scholar
Musacchia, X. J. & Hartner, A. M. (1970). Proc. Soc. exp. Biol. Med. 135, 307.CrossRefGoogle Scholar
Pénzes, L. & Simon, G. (1968). Jap. J. Physiol. 18, 288.CrossRefGoogle Scholar
Peters, J. M., Krijnen, C. J. & Boyd, E. M. (1967). J. Reprod. Fert. 14, 235.Google Scholar
Poo, L. J., Lew, W. & Addis, T. (1939). J. biol. Chem. 128, 69.CrossRefGoogle Scholar
Satake, K., Okuyama, T., Ohashi, M. & Shinoda, T. (1960). J. Biochem., Tokyo 47, 654.CrossRefGoogle Scholar
Semen, N. P. (1968). Fÿzÿol. Zh. 14, 654.Google Scholar
Soergal, K. H. (1971). Gastvoevzterology 61, 261.CrossRefGoogle Scholar
Souders, H. J. & Morgan, A. F. (1957). Am. J. Physiol. 191, 1.CrossRefGoogle Scholar
Weser, E. (1971). Am. J. clin. Nutr. 24, 133.CrossRefGoogle Scholar