Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T03:10:02.188Z Has data issue: false hasContentIssue false

Effect of potassium salts in rats adapted to an acidogenic high-sulfur amino acid diet

Published online by Cambridge University Press:  08 March 2007

Houda Sabboh
Affiliation:
Unité des Maladies Métaboliques et Micronutriments, INRA de Clermont-Ferrand/Theix and CRNH d'Auvergne, 63122, St-Genès-Champanelle, France
Marie-Noëlle Horcajada
Affiliation:
Unité des Maladies Métaboliques et Micronutriments, INRA de Clermont-Ferrand/Theix and CRNH d'Auvergne, 63122, St-Genès-Champanelle, France
Véronique Coxam
Affiliation:
Unité des Maladies Métaboliques et Micronutriments, INRA de Clermont-Ferrand/Theix and CRNH d'Auvergne, 63122, St-Genès-Champanelle, France
Jean-Claude Tressol
Affiliation:
Unité des Maladies Métaboliques et Micronutriments, INRA de Clermont-Ferrand/Theix and CRNH d'Auvergne, 63122, St-Genès-Champanelle, France
Catherine Besson
Affiliation:
Unité des Maladies Métaboliques et Micronutriments, INRA de Clermont-Ferrand/Theix and CRNH d'Auvergne, 63122, St-Genès-Champanelle, France
Christian Rémésy
Affiliation:
Unité des Maladies Métaboliques et Micronutriments, INRA de Clermont-Ferrand/Theix and CRNH d'Auvergne, 63122, St-Genès-Champanelle, France
Christian Demigné*
Affiliation:
Unité des Maladies Métaboliques et Micronutriments, INRA de Clermont-Ferrand/Theix and CRNH d'Auvergne, 63122, St-Genès-Champanelle, France
*
*Corresponding author: Dr C. Demigné, fax +33 473 624638, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low-grade metabolic acidosis, consecutive to excessive catabolism of sulfur amino acids and a high dietary Na:K ratio, is a common feature of Western food habits. This metabolic alteration may exert various adverse physiological effects, especially on bone, muscle and kidneys. To assess the actual effects of various K salts, a model of the Westernised diet has been developed in rats: slight protein excess (20 % casein); cations provided as non-alkalinising salts; high Na:K ratio. This diet resulted in acidic urine (pH 5·5) together with a high rate of divalent cation excretion in urine, especially Mg. Compared with controls, K supplementation as KCl accentuated Ca excretion, whereas potassium bicarbonate or malate reduced Mg and Ca excretion and alkalinised urine pH (up to 8). In parallel, citraturia was strongly increased, together with 2-ketoglutarate excretion, by potassium bicarbonate or malate in the diet. Basal sulfate excretion, in the range of 1 mmol/d, was slightly enhanced in rats fed the potassium malate diet. The present model of low-grade metabolic acidosis indicates that potassium malate may be as effective as KHCO3 to counteract urine acidification, to limit divalent cation excretion and to ensure high citrate concentration in urine.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2005

References

Ambuhl, PM, Zajicek, HK, Wang, H, Puttaparthi, K & Levi, M (1998) Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat. Kidney Int 53, 12881298.CrossRefGoogle ScholarPubMed
Aruga, S, Wehrli, S, Kaissling, B, Moe, OW, Preisig, PA, Pajor, AM & Alpern, RJ (2000) Chronic metabolic acidosis increases NaDC-1 mRNA and protein abundance in rat kidney. Kidney Int 58, 206215.CrossRefGoogle ScholarPubMed
Barzel, US (1995) The skeleton as an ion exchange system: implications for the role of acid-base imbalance in the genesis of osteoporosis. J Bone Miner Res 10, 14311436.CrossRefGoogle ScholarPubMed
Bella, DL & Stipanuk, MH (1995) Effects of protein, methionine, or chloride on acid-base balance and on cysteine catabolism. Am J Physiol 269, E910E917.Google ScholarPubMed
Brennan, TS, Klahr, S & Hamm, LL (1986) Citrate transport in rabbit nephron. Am J Physiol 251, F683F689.Google ScholarPubMed
Burckhardt, BC & Burckhardt, G (2003) Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 146, 95158.CrossRefGoogle ScholarPubMed
Bushinsky, DA (1995) Stimulated osteoclastic and suppressed osteoblastic activity in metabolic but not respiratory acidosis. Am J Physiol 268, C80C88.CrossRefGoogle Scholar
Cheema-Dhadli, S, Jungas, RL & Halperin, ML (1987) Regulation of urea synthesis by acid-base balance in vivo: role of NH3 concentration. Am J Physiol 252, F221F225.Google ScholarPubMed
Coudray, C, Feillet-Coudray, C, Grizard, D, Tressol, JC, Gueux, E & Rayssiguier, Y (2002) Fractional intestinal absorption of magnesium is directly proportional to dietary magnesium intake in rats. J Nutr 132, 20432047.CrossRefGoogle ScholarPubMed
Dai, LJ, Friedman, PA & Quamme, GA (1997) Acid-base changes alter Mg 2+ uptake in mouse distal convoluted tubule cells. Am J Physiol 272, F759F766.Google ScholarPubMed
Demigné, C, Sabboh, H, Puel, C, Rémésy, C & Coxam, V (2004a) Organic anions potassium salts in nutrition and metabolism. Nutr Res Rev 17, 249258.CrossRefGoogle ScholarPubMed
Demigné, C, Sabboh, H, Rémésy, C & Meneton, P (2004b) Protective effects of high dietary potassium: nutritional and metabolic aspects. J Nutr 134, 29032906.CrossRefGoogle ScholarPubMed
Fernandes, I, Laouari, D, Tutt, P, Hampson, G, Friedlander, G & Silve, C (2001) Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger expression in chronic renal failure in rats. Kidney Int 59, 210221.CrossRefGoogle ScholarPubMed
Frassetto, L, Morris, RC Jr, Sellmeyer, DE, Todd, K & Sebastian, A (2001) Diet, evolution and aging – the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Eur J Nutr 40, 200213.CrossRefGoogle ScholarPubMed
Frassetto, LA, Morris, RC & Sebastian, A (1996) Effect of age on blood acid-base composition in adult humans: role of age-related renal function decline. Am J Physiol 271, F1114F1122.Google Scholar
Gilleran, G, O'Leary, M, Bartlett, WA, Vinall, H, Jones, AF & Dodson, PM (1996) Effects of dietary sodium substitution with potassium and magnesium in hypertensive type II diabetics: a randomised blind controlled parallel study. J Hum Hypertens 10, 517521.Google ScholarPubMed
Greiber, S & Mitch, WE (1992) Mechanisms for protein catabolism in uremia: metabolic acidosis and activation of proteolytic pathways. Miner Electrolyte Metab 18, 233236.Google ScholarPubMed
Halperin, ML, Ethier, JH & Kamel, KS (1990) The excretion of ammonium ions and acid-base balance. Clin Biochem 23, 185188.CrossRefGoogle ScholarPubMed
Häussinger, D (1997) Liver regulation of acid-base balance. Miner Electrolyte Metab 23, 249252.Google ScholarPubMed
He, FJ & McGregor, GA (2001) Beneficial effects of potassium. Br Med J 323, 497501.CrossRefGoogle ScholarPubMed
Hess, B, Michel, R, Takkinen, R, Ackermann, D & Jaeger, P (1994) Risk factors for low urinary citrate in calcium nephrolithiasis: low vegetable fibre intake and low urine volume to be added to the list. Nephrol Dial Transplant 9, 642649.CrossRefGoogle ScholarPubMed
Marangella, M, Di Stefano, M, Casalis, S, Berutti, S, D'Amelio, P & Isaia, GC (2004) Effects of potassium citrate supplementation on bone metabolism. Calcif Tissue Int 74, 330335.CrossRefGoogle ScholarPubMed
Martin, M, Ferrier, B & Baverel, G (1989) Transport and utilization of alpha-ketoglutarate by the rat kidney in vivo. Pflugers Arch 413, 217224.CrossRefGoogle ScholarPubMed
Melnick, JZ, Preisig, PA, Moe, OW, Srere, P & Alpern, RJ (1998) Renal cortical aconitase is regulated in hypo- and hypercitraturia. Kidney Int 54, 160165.CrossRefGoogle ScholarPubMed
Melnick, JZ, Srere, PA, Elshourbagy, NA, Moe, OW, Preisig, PA & Alpern, RJ (1996) Adenosine triphosphate citrate lyase mediates hypocitraturia in rats. J Clin Invest 98, 23812387.CrossRefGoogle ScholarPubMed
Morris, RC Jr, Schmidlin, O, Tanaka, M, Forman, A, Frassetto, L & Sebastian, A (1999) Differing effects of supplemental KCl and KHCO3: pathophysiological and clinical implications. Semin Nephrol 19, 487493.Google ScholarPubMed
Nakamura, H, Kajikawa, R & Ubuka, T (2002) A study on the estimation of sulfur-containing amino acid metabolism by the determination of urinary sulfate and taurine. Amino Acids 23, 427431.CrossRefGoogle Scholar
New, SA (2002) Nutrition Society Medal lecture. The role of the skeleton in acid-base homeostasis. Proc Nutr Soc 61, 151164.CrossRefGoogle ScholarPubMed
Pajor, AM (1999) Citrate transport by the kidney and intestine. Semin Nephrol 19, 195200.Google ScholarPubMed
Puttaparthi, K, Markovich, D, Halaihel, N, Wilson, P, Zajicek, HK, Wang, H, Biber, J, Murer, H, Rogers, T & Levi, M (1999) Metabolic acidosis regulates rat renal Na-Si cotransport activity. Am J Physiol 276, C1398C1404.CrossRefGoogle ScholarPubMed
Quamme, GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52, 11801195.CrossRefGoogle ScholarPubMed
Remer, T (2000) Influence of diet on acid-base balance. Semin Dial 13, 221226.CrossRefGoogle ScholarPubMed
Remer, T & Manz, F (1994) Estimation of the renal net acid excretion capacity: evidence that an increased protein intake improves the capacity of the kidney to excrete ammonium. J Nutr Biochem 6, 431437.CrossRefGoogle Scholar
Rémésy, C, Demigné, C & Aufrère, J (1978) Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochem J 170, 321329.CrossRefGoogle Scholar
Ryan, MP (1993) Interrelationships of magnesium and potassium homeostasis. Miner Electrolyte Metab 19, 290295.Google ScholarPubMed
Sakhaee, K, Williams, RH, Oh, MS, Padalino, P, Adams-Huet, B, Whitson, P & Pak, CY (1993) Alkali absorption and citrate excretion in calcium nephrolithiasis. J Bone Miner Res 8, 789794.CrossRefGoogle ScholarPubMed
Stoll, B, McNelly, S, Buscher, HP & Hässinger, D (1991) Functionnal hepatocyte heterogeneity in glutamate, aspartate and alpha-ketoglutarate uptake: a histoautoradiography study. Hepatology 13, 247253.CrossRefGoogle Scholar
Van Buren, M, Rabelink, TJ, Van Rijn, HK & Koomans, HA (1992) Effects of acute NaCl, KCl and KHCO3 loads on renal electrolyte excretion in humans. Clin Sci 83, 567574.CrossRefGoogle ScholarPubMed
Ward, WE, Kim, S, Robert Bruce, W (2003) A western-style diet reduces bone mass and biomechanical bone strength to a greater extent in male compared to female rats during development. Br J Nutr 90, 589595.CrossRefGoogle ScholarPubMed
Wolffram, S, Unternahrer, R, Grenacher, B & Scharrer, E (1994) Transport of citrate across the brush border and basolateral membrane of rat small intestine. Comp Biochem Physiol 109, 3952.CrossRefGoogle ScholarPubMed
Won, JH, Fukuda, S, Sato, R & Naito, Y (1996) Bone histomorphometric changes due to differences in calcium intake under metabolic acidosis in rats. J Vet Med Sci 58, 611616.CrossRefGoogle ScholarPubMed
Zimmerli, B, O'Neill, B & Meier, PJ (1992) Identification of sodium-dependent and sodium-independent dicarboxylate transport systems in rat liver basolateral membrane vesicles. Pflügers Arch 421, 329335.CrossRefGoogle ScholarPubMed