Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T01:03:45.107Z Has data issue: false hasContentIssue false

Effect of monensin on feed utilization and gastrointestinal fermentation in the hamster (Mesocricetus auratus)

Published online by Cambridge University Press:  09 March 2007

Ei Sakaguchi
Affiliation:
Department of Animal Science, Faculty of Agriculture, Tohoku University, Sendai 980, Japan
Tatsuro Matsumoto
Affiliation:
Department of Animal Science, Faculty of Agriculture, Tohoku University, Sendai 980, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Three experiments were conducted to examine the effect of monensin on growth performance, feed utilization and volatile fatty acids (VFA) in the forestomach and caecum of hamsters.

2. In Expt 1, monensin was fed at levels of 0, 5, 10 and 20 mg/kg to the growing male and female hamsters given a commercial diet (major component: lucerne (Medicago sativa) meal). In Expt 2, monensin was fed at levels of 0, 5, 15, 45 and 135 mg/kg to the growing male hamsters given a semi-purified diet containing 10 g urea/kg (main components: maize starch, sucrose, casein and cellulose). In Expt 3, monensin was fed at levels of 0 and 40 mg/kg to the growing male hamsters given the commercial diet containing lucerne meal or a semi-purified diet.

3. In Expt 1, monensin improved feed conversion efficiency and growth performances in the young growing hamsters, but monensin did not affect the hamsters at a later growing stage.

4. In response to monensin the proportion of acetic acid increased and that of propionic acid decreased in the forestomach, whereas the proportion of acetic acid decreased and that of propionic acid increased in the caecum in Expt 2. The hamsters given 135 mg monensin/kg ate less, developed diarrhoea and died.

5. The apparent digestibility of crude protein (nitrogen x 6.25) was improved by monensin but those of dry matter and neutral-detergent fibre (NDF) were decreased in hamsters given the semi-purified diet in Expt 3. Monensin did not appear to have a significant effect on the apparent digestibility of the diet containing lucerne meal.

6. The responses to monensin in hamsters are compared with those in ruminants.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Association of Official Analytical Chemists (1975). Official Methods of Analysis of the Association of Analytical Chemists, 12th ed. Washington: AOAC.Google Scholar
Boling, J. A., Bradley, N. W. & Campbell, L. D. (1977). Journal of Animal Science 44, 867871.CrossRefGoogle Scholar
Chen, M. & Wolin, M. J. (1979). Applied and Environmental Microbiology 38, 7277.CrossRefGoogle Scholar
Coombe, J. B., Dinius, D. A., Goering, H. K. & Oltjen, R. R. (1979). Journal of Animal Science 48, 12231233.CrossRefGoogle Scholar
Dinius, D. A., Simpson, M. E. & Marsh, P. B. (1976). Journal of Animal Science 42, 229234.CrossRefGoogle Scholar
Duncan, D. B. (1955). Biometries 11, 142.CrossRefGoogle Scholar
Fenner, H. & Elliot, J. M. (1963). Journal of Animal Science 22, 624627.CrossRefGoogle Scholar
Gill, D. R., Martin, J. R. & Lake, R. (1976). Journal of Animal Science 43, 363368.CrossRefGoogle Scholar
Hanson, T. L. & Klopfenstein, T. (1979). Journal of Animal Science 48, 474479.CrossRefGoogle Scholar
Harper, A. E. (1959). Journal of Nutrition 68, 405418.CrossRefGoogle Scholar
Hoover, W. H., Mannings, C. L. & Sheerin, H. E. (1969). Journal of Animal Science 28, 349352.CrossRefGoogle Scholar
Horton, G. M. J. (1980). Canadian Journal of Animal Science 60, 169172.CrossRefGoogle Scholar
Horton, G. M. J., Bassendowski, K. A. & Keeler, E. H. (1980). Journal of Animal Science 50, 9971008.CrossRefGoogle Scholar
Horton, G. M. J. & Stockdale, P. H. G. (1979). American Journal of Veterinary Research 40, 966973.Google Scholar
Hungate, R. E. (1966). The Rumen and Its Microbes. New York: Academic Press.Google Scholar
Imai, S., Lap, H. T. & Ogimoto, K. (1976). Japanese Journal of Parasitology 25, Suppl., 83.Google Scholar
Joyner, A. E. Jr, Brown, L. J., Fogg, T. J. & Rossi, R. T. (1979). Journal of Animal Science 48, 10651069.CrossRefGoogle Scholar
Kunstýr, I. (1974). Zentralblatt für Veterinarmedizin 21A, 553561.Google Scholar
Lemenager, R. P., Owens, F. N., Shockey, B. J., Lusby, K. S. & Totusek, R. (1978). Journal of Animal Science 47, 255261.CrossRefGoogle Scholar
Manda, T. (1979). Japan Agricultural Research Quarterly 13, 110–115.Google Scholar
Maynard, L. A., Loosli, J. K., Hintz, H. F. & Warner, R. G. (1979). Animal Nutrition, 7th ed. New York: McGraw-Hill Book Company.Google Scholar
Muntifering, R. B., Theurer, B., Swingle, R. S. & Hale, W. H. (1980). Journal of Animal Science 50, 930936.CrossRefGoogle Scholar
Murai, M, & Manda, T. (1977). Experimental Herbivora 2 (Suppl.), 7077.Google Scholar
Perry, T. W., Dunn, W. J., Peterson, R. C., Beeson, W. M., Stob, M. & Mohler, M. T. (1979). Journal of Animal Science 48, 742747.CrossRefGoogle Scholar
Perry, T. W., Shields, D. R., Dunn, W. J. & Mohler, M. T. (1983). Journal of Animal Science 57, 10671076.CrossRefGoogle Scholar
Poos, M. I., Hanson, T. L. & Klopfenstein, T. J. (1979). Journal of Animal Science 48, 15161524.CrossRefGoogle Scholar
Potter, E. L., Cooley, C. O., Richardson, L. F., Raun, A. P. & Rathmacher, R. P. (1976). Journal of Animal Science 43, 665669.CrossRefGoogle Scholar
Raun, A. P., Cooley, C. O., Potter, E. L., Rathmacher, R. P. & Richardson, L. F. (1976). Journal of Animal Science 43, 670677.CrossRefGoogle Scholar
Richardson, L. F., Raun, A. P., Potter, E. L., Cooley, C. O. & Rathmacher, R. P. (1976). Journal of Animal Science 43, 657664.CrossRefGoogle Scholar
Sakaguchi, E., Itoh, J., Shinohara, H. & Matsumoto, T. (1981). British Journal of Nutrition 46, 503512.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed. Ames: Iowa state university press.Google Scholar
Thompson, W. R. & Riley, J. G. (1980). Journal of Animal Science 50, 563571.CrossRefGoogle Scholar
Turner, H. A., Raleigh, R. J. & Young, D. C. (1977). Journal of Animal Science 44, 338342.CrossRefGoogle Scholar
Utley, P. R., Newton, G. L., Ritter, R. J. & McCormick, W. C. (1976). Journal of Animal Science 42, 754760.CrossRefGoogle Scholar
Utley, P. R., Newton, G. L., Wilson, D. M. & McCormick, W. C (1977). Journal of Animal Science 45, 154159.CrossRefGoogle Scholar
Van maanen, R. W., Herbein, J. H., McGilliard, A. D. & Young, J. W. (1978). Journal of Nutrition 108, 10021007.CrossRefGoogle Scholar
Van Nevel, C. J. & Demeyer, D. I. (1977). Applied and Environmental Microbiology 34, 251257.CrossRefGoogle Scholar
Van soest, P. J. & Wine, R. H. (1967). Journal of the Association of Official Analytical Chemists 50, 5055.Google Scholar
Wallace, R. J., Czerkawski, J. W. & Breckenridge, G. (1981). British Journal of Nutrition 46, 131148.CrossRefGoogle Scholar
Wedegaertner, T. C. & Johnson, D. E. (1983). Journal of Animal Science 51, 168177.CrossRefGoogle Scholar