Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T08:21:44.122Z Has data issue: false hasContentIssue false

The effect of guar gum on the viscosity of the gastrointestinal contents and on glucose uptake from the perfused jejunum in the rat

Published online by Cambridge University Press:  09 March 2007

N. A. Blackburn
Affiliation:
ARC Food Research Institute, Colney Lane, Norwich NR4 7UA
I. T. Johnson
Affiliation:
ARC Food Research Institute, Colney Lane, Norwich NR4 7UA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Male Wistar rats were meal-fed for at least 10d a control semi-synthetic diet containing no guar gum, or one of three similar test diets containing 3, 10 or 20 g dry guar gum/kg.

2. Rats were killed 6 h after feeding, and contents of stomach, small and large intestine were collected separately. The apparent viscosities of stomach and smalt intestine contents from animals fed on diets containing 10 and 20 g guar gum/kg were increased relative to control animals, but large intestine contents were unchanged

3. In the second part of this study, male Wistar rats were anaesthetized and two consecutive lengths of jejunum were perfused, initially with Ringer only (control) or Ringer plus 5 or 6g guar gum/1 (test). Following this pre-perfusion, both segments were perfused with Ringer containing glucose (10 mM), [3H]glucose and [14C]inulin, and the rate of glucose absorption was determined

4. The rate of glucose absorption was decreased relative to control values in segments pre-perfused with both 5 and 6g guar gum/I solution, but this reduction was significant only in the instance of the 6g/l solution (P< 0.001)

5. These results provide evidence to support previous assumptions that ingestion of guar gum will increase the apparent viscosity of the contents of the stomach and small intestine. We propose that a possible mechanism by which guar reduces post-prandial glycaemia is a reduction of glucose absorption from the smali intestine, resulting from an increase in viscosity of the contents

Type
Papers of direct reference to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Abele, R., Cochet, B., Balant, L., Gorgia, A., Tinguely, D., Estreicher, J. (1978). Pharm. Acta helv. 53, 253.Google Scholar
Booth, A. N., Hendrickson, A. P. & DeEds, F. (1963). Toxic. appl. Pharmac. 5, 478.CrossRefGoogle Scholar
Canivet, B., Creisson, G., Freychet, P. & Dageville, X. (1980). Lancet ii, 862.CrossRefGoogle Scholar
Elsenhans, B., Süfke, U., Zenker, D., Blume, R., Caspary, W. F. (1980). Proc. XI int. Congr. GastroenterologyHamburg.Google Scholar
Förster, H. & Hoos, I. (1977). Nutr. Metab. 21, 262Suppl. 1.CrossRefGoogle Scholar
Holt, S., Heading, R. C., Carter, D. C., Prescott, L. F. & Tothill, P. (1979). Lancet i, 636.CrossRefGoogle Scholar
Jenkins, D. J. A., Goff, D. V., Leeds, A. R., Alberti, K. G. M. M., Wolever, T. M. S., Gassul, M. A. & Hockaday, T. D. R. (1976). Lancet ii, 172.CrossRefGoogle Scholar
Jenkins, D. J. A., Leeds, A. R. & Gassul, M. A. (1977). Proc. Nutr. Soc. 36, 44A.Google Scholar
Jenkins, D. J. A., Leeds, A. R., Gassul, M. A., Cochet, B. & Alberti, K. G. M. M. (1977). Ann. int. Med. 86, 20.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gassul, M. A., Haisman, P., Dilawari, J., Goff, D. V., Metz, G. L. & Alberti, K. G. M. M. (1978). Br. Med. J. 1, 1392.CrossRefGoogle Scholar
Johnson, I. T. & Gee, J. M. (1980). Proc. Nutr. Soc. 39, 52A.Google Scholar
Johnson, I. T. & Gee, J. M. (1981) Gut (In the Press).Google Scholar
Leeds, A. R. (1979). Lancet i, 872.Google Scholar
Leeds, A. R., Bolster, N. R., Andrews, R. & Truswell, A. S. (1979). Proc. Nutr. Soc. 38, 44A.CrossRefGoogle Scholar
Levy, G. & Jusko, W. J. (1965). J. Pharm. Sci. 54, 219.CrossRefGoogle Scholar
McDowall, R. J. S. (1960). In Handbook of Physiology, 43rd ed. p. 357. London: J. Murray.Google Scholar
Morgan, L. M., Goulder, T. J., Tsiolakis, D., Marks, V. & Alberti, K. G. M. M. (1979). Diabetologia 17, 85.CrossRefGoogle Scholar
National Research Council (1972). In Nutrient Requirements of Laboratory Animals, 2nd edn. p. 64. Washington DC: National Academy of Sciences.Google Scholar
Sherman, P. (1976). In Characterization of Mechanical Properties of Food Materials, pp. 5872 [Yu, Chen, editor]. New Jersey: Rutgers University.Google Scholar
Southgate, D. A. T. (1973). Proc. Nutr. Soc. 32, 131.CrossRefGoogle Scholar
Stephen, A. M. & Cummings, J. H. (1980). Nature, Lond. 284, 283.CrossRefGoogle Scholar
Taylor, R. H. (1979). Lancet i, 872.CrossRefGoogle Scholar
Trowel, H., Southgate, D. A. T., Wolever, T. M. S., Leeds, A. R., Gassul, M. A. & Jenkins, D. J. A. (1976). Lancet i, 967.CrossRefGoogle Scholar
Wahlqvist, M. L., Morris, M. J., Littlejohn, G. O., Bond, A. & Jackson, R. V. J. (1979). Aust. & N.Z. J. Med. 9, 154.CrossRefGoogle Scholar
Wolever, T. M. S., Jenkins, D. J. A., Leeds, A. R., Gassul, M. A., Dilawari, J. B., Goff, D. V., Metz, G. L. & Alberti, K. G. M. M. (1978). Proc. Nutr. Soc. 37, 47A.Google Scholar