Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T12:41:35.488Z Has data issue: false hasContentIssue false

Effect of glucose on fermentation heat in sheep rumen fluid in vitro

Published online by Cambridge University Press:  09 March 2007

A. Arieli
Affiliation:
The Hebrew University of Jerusalem, Faculty of Agriculture, PO Box 12, Rehovot 76–100, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Heat production rate (H) of rumen fluid was measured in a direct calorimeter, Basal H of samples of 15 ml rumen fluid mixed with 45 ml buffer was 0.4 mW/ml rumen fluid.

2. Addition of glucose (0.4–6.4 mg/sample) was followed by a dose-dependent increase in H. Maximal H was 1.1 rnW/ml and lasted up to 5 min, returning thereafter to the basal level.

3. Expression of fermentation heat (Hf; kJ/mol substrate added) against glucose dose indicated an asymptotic dose response.

4. Maximal Hf (at infinite dilution) agreed with stoichiometric calculations whereas minimal Hf suggested a partial fermentation of the substrate at a high-glucose dose in the rumen environment.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Bauchop, T. & Elsden, S. R. (1960). Journal of General Microbiology 23, 457470.Google Scholar
Button, D. K. (1985). Microbiological Reviews 49, 270297.CrossRefGoogle Scholar
El-Shazly, K. & Hungate, R. E. (1965). Applied Microbiology 13, 6269.CrossRefGoogle Scholar
Forrest, W. W. (1969). In Biochemical Microcalorimetry, pp. 165180. [Brown, H. D., editor]. New York: Academic Press.Google Scholar
Hershberger, T. V. & Harstook, E. (1970). Journal of Animal Science 30, 257261.CrossRefGoogle Scholar
Houpt, T. R. (1968). American Journal of Veterinary Research 29, 411419.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Isaacson, H. R., Hinds, F. C., Bryant, M. P. & Owens, F. N. (1975). Journal of Dairy Science 58, 16451659.CrossRefGoogle Scholar
Leng, R. A. (1983). Maximum Livestock Production from Minimum Land, Proceeding of the 3rd Seminar, pp. 79104. Joydebpur: Bangladesh Agriculture Research Institute.Google Scholar
McDougall, E. I. (1948). Biochemical Journal 43, 99109.CrossRefGoogle Scholar
Mackie, R. I., Gilchnst, F. M. C. & Heath, S. (1984). Journal of Agricultural Science 103, 3751.CrossRefGoogle Scholar
Marston, H. R. (1948). Biochemical Journal 42, 564574.CrossRefGoogle Scholar
Menke, K. H. & Ehresvard, U. (1974). In Energy Metabolism of Farm Animals, pp. 9194 [Menke, K. H., Lantzch, H. J. and Reichl, J. R., editors]. Stuttgart: Hohenheirn University Press.Google Scholar
Nunomura, K. & Fujita, T. (1981). Journal of General Applied Microbiology 27, 357364.CrossRefGoogle Scholar
Ørskov, E. R. (1975). World Review of Nutrition and Dietetics 22, 152182.CrossRefGoogle Scholar
Russell, J. B. & Hespell, R. B. (1981). Journal of Dairy Science 64, 11531169.CrossRefGoogle Scholar
Seeley, R. C., Armstrong, D. G. & Macrae, J. C. (1969). In Energy Metabolism of Farm Animals. pp. 93100 [Blaxter, K. L., Kielanowski, J. and Thorbek, G. editors]. Newcastle upon Tyne: Oriel Press.Google Scholar
Takahashi, R. & Nakamura, K. (1969). Agriculture, Biology and Chemistry 33, 619621.CrossRefGoogle Scholar
Walker, D. J. & Forrest, W. W. (1964). Australian Journal of Agricultrual Research 15, 299315.CrossRefGoogle Scholar
Walker, D. J. & Monk, P. R. (1971). Applied Microbiology 22, 741747.CrossRefGoogle Scholar
Webster, A. J. F., Osuji, P. P., White, F. & Ingram, J. F. (1975). British Journal of Nutrition 34, 125139.CrossRefGoogle Scholar