Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T04:05:51.017Z Has data issue: false hasContentIssue false

Effect of fibre level, particle size and adaptation period on digestibility and rate of passage as measured at the ileum and in the faeces in the adult rabbit

Published online by Cambridge University Press:  09 March 2007

T. Gidenne
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de recherches sur l'élevage du lapin, BP 27, 31326 Castanet-Tolosan, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The use of specific methods other than gravimetric ones to analyse fibre permitted a more precise study of the degradation of cell wall (CW) in the digestive tract. Digesta flow and rate of passage measurements have not been assessed previously in rabbits to investigate fibre digestion and fibre effects simultaneously in the proximal and in the distal segments of the tract. The effect of the level of dietary fibre on ileal and overall digestibility and rate of passage were studied by comparing semi-purified diets containing only one source of CW (dehydrated lucerne (Medicago sativa) meal) given to adult female rabbits. The effect of fibre particle size and adaptation period were also investigated. Measurements of fibre composition using both colorimetric and gas-liquid chromatographic techniques, showed that large amounts of (CW) were degraded in the caecocolic segments. Increasing dietary fibre level reduced the rate of passage but fibre degradation was increased, at the same time a lower digestive efficiency for energy in the small intestine was found. A small quantity of CW was apparently degraded before the caecum, assuming that the water-soluble fraction of CW was essentially implicated. Grinding lucerne meal through a 1 mm instead of a 3 mm screen did not improve CW digestibility in spite of a longer rate of passage in the caeco-colic segments. Adaptation to a high-fibre diet resulted in an higher digestive volume for colon and caecum, related to an improved degradation of CW. Furthermore, digestive efficiency in the small intestine appeared higher for rabbits adapted to a high-fibre diet than that for rabbits initially fed on a low-fibre diet.

Type
Effects of Complex Carbohydrates on Nutrient Absortion
Copyright
Copyright © The Nutrition Society 1992

References

Björnhag, G. (1972). Separation and delay of contents in the rabbit colon. Swedish Journal of Agricultural Research 2, 125136.Google Scholar
Blakeney, B., Harris, P. J., Henry, R. J. & Stone, B. A. (1983). A simple and rapid preparation of alditolacetate for monosaccharide analysis. Carbohydrate Research 113, 291299.CrossRefGoogle Scholar
Blumenkrantz, N. & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry 54, 484489.CrossRefGoogle ScholarPubMed
Bouyssou, T., Candau, M. & Ruckebush, Y. (1988). Réponses motrices du côlon aux constituants pariétaux et à la finesse de mouture des aliments chez le lapin. (Colonic motility pattern according to the source of fibre and to the grinding level of the diet, in the rabbit.) Reproduction Nutrition Développement 28, 181182.CrossRefGoogle Scholar
Carré, B., Prévotel, B. & Leclercq, B. (1984). Cell wall content as a predictor of metabolisable energy value of poultry feedingstuffs. British Poultry Science 25 561 572.Google Scholar
Chabeauti, E. & Noblet, J. (1990). Digestion par le porc en croissance de quatres sources de parois végétales utilisées seules ou en association. (Digestion in the growing pig of four sources of fibre used alone or in association.) Journée de la Recherche Porcine 22, 167174.Google Scholar
Chesson, A. & Monro, F. A. (1982). Legume pectic substances and their degradation in the ovine rumen. Journal of the Science of Food and Agriculture 33, 852859.CrossRefGoogle Scholar
Chesson, A., Richardson, A. J. & Robertson, J. A. (1985). Fibre digestion and bacteriology of the digestive tract of pigs fed cereals and vegetable fibre. In Digestive Physiology in the Pig. National Institute for Animal Science. Report no. 580, pp. 272275. Copenhagen: National Institute for Animal Science.Google Scholar
Darcy, B., Laplace, J. P. & Villiers, P. A. (1981). Digestion dans l'intestin grêle chez le porc. (4) Cinétique de passage des digesta au niveau de la jonction ileo-caeco-colique et bilans de la digestion selon la nature de l'amidon et la source de protéines alimentaires. (Digestion in the small intestine of the pig. (4) Digesta flow measurements at the ileo-caeco-colic junction and digestibility according to starch and protein source.) Annales de Zootechnie 30, 3162.CrossRefGoogle Scholar
Ehle, F. R., Jeraci, J. L., Robertson, J. B. & Van Soest, P. J. (1982). The influence of dietary fiber on digestibility, rate of passage and gastrointestinal fermentation in pigs. Journal of Animal Science 55, 10711081.CrossRefGoogle Scholar
Ellis, W. C. & Beever, D. E. (1985). Methods for binding rare earths to specific feed particles. In Techniques in Particle Size Analysis of Feed and Digesta in Ruminants. Canadian Society of Animal Science Occasional Publication no. 1, pp. 154165 [Kennedy, P. M., editor]. Edmonton: Canadian Society of Animal Science.Google Scholar
Fadel, J. G., Newmann, K. R., Newmann, C. W. & Graham, H. (1989). Effects of baking huless barley on the digestibility of dietary components as measured at the ileum and in the faeces in pigs. Journal of Nutrition 119, 722726.CrossRefGoogle Scholar
Faichney, G. J. (1975). The use of markers to partition digestion within the gastro-intestinal tract of ruminants. Digestion and Metabolism in the Ruminant pp. 227241 [McDonald, I.W.and Warner, A. C. I., editors]. Armidale: University of New England.Google Scholar
Gidenne, T. (1987). Effet de l'addition d'un concentré riche en fibres dans une ration à base de foin, distribueée à deux niveaux alimentaires chez la lapine adulte. (2) Mesures de digstibilité. (Effect of the addition of a fibre-rich concentrate to a hay-based diet offered at two levels of feeding to adult rabbits. (2) Digestibility measurements.) Reproduction Nutrition Développement 27, 801810.CrossRefGoogle Scholar
Gidenne, T. (1988). Mesures du flux iléal chez le lapin: comparaison de l'ytterbium et du chrome mordancé et représentativité des digesta receuillis. (Ileal flow measurements in the rabbit: comparison between ytterbium and mordanted chromium and representivity of ileal samples.) Reproduction Nutrition Développement 28, Suppl. 1, 153154.CrossRefGoogle Scholar
Gidenne, T., Bouyssou, T. & Ruckebusch, Y. (1988). Sampling of digestive contents by ileal canulation in the rabbit. Animal Production 46, 147151.Google Scholar
Gidenne, T. & Lebas, F. (1987). Estimation quantitative de la caecotrophie chez le lapin en croissance: variations en fonction de l'âge. (Quantitative estimation of caecotrophy in the growing rabbit: variations with age.) Annales de Zootechnie 36, 225236.CrossRefGoogle Scholar
Gidenne, T. & Ruckebusch, Y. (1989). Flow and rate of passage studies at the ileal level in the rabbit. Reproduction Nutrition Développement 29, 403412.CrossRefGoogle ScholarPubMed
Gidenne, T. & Scalabrini, F. (1990). Digestion des constituants pariétaux et activité fermentaire caecale chez le lapin en croissance: incidence du taux d'incorporation et de la granulométrie de la source de fibre. (Fibre digestion and caecal fermentation for the growing rabbit: effect of level of incorporation and grinding of the fibre source.) 6ème Journées de la Recherche sur la Nutrition et l'alimentation des Herbivores, Communication no. 27. Paris: Institut Nationale Agronomique.Google Scholar
Giger, S., Sauvant, D., Dorléans, M. & Morand-fehr, P. (1979). Détermination semi-automatique des constituants membranaires des aliments concentrés par la méthode de van Soest. (Semi-automatic determination of cell wall constituents in concentrate feeds using the van Soest method.) 30th Annual meeting of the European Association for Animal Production. Harrogate, England: Commission of Animal Feeding, N 3.5.Google Scholar
Graham, H., Hesselman, K. & Aman, P. (1986). The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based diet. Journal of Nutrition 116, 242251.CrossRefGoogle Scholar
Kass, M. L., Van Soest, P. J., Pond, W. G., Lewis, B. & McDowell, R. E. (1980). Utilisation of dietary fiber from alfalfa by growing swine. 1. Apparent digestibility of diet components in specific segments of the gastrointestinal tract. Journal of Animal Science 50, 175191.CrossRefGoogle Scholar
Kuan, K. K., Stanogias, G. & Dunkin, A. C. (1983). The effect of proportion of cell-wall material from lucerne meal on apparent digestibility, rate of passage and gut characteristics in pigs. Animal Production 36, 201209.Google Scholar
Laplace, J. P., Darcy-Vrillon, B., Perez, J. M., Henry, Y., Giger, S. & Sauvant, D. (1989). Associative effects between two fibre sources on ileal and overall digestibilities of aminoacids and cell-wall components in growing pigs. British Journal of Nutrition 61, 7587.CrossRefGoogle ScholarPubMed
Laplace, J. P. & Lebas, F. (1977). Le transit digestif chez le lapin. (7) Influence de la finesse de broyage des constituants d'un aliment granulé. (Rate of passage in the rabbit. (7) Effect of the grinding level of a pelleted diet.) Annales de Zootechnie 26, 413420.CrossRefGoogle Scholar
Lebas, F., Laplace, J. P. & Droumenq, P. (1982). Effets de la teneur en énergie de l'aliment chez le lapin. Variations en fonction de l'âge des animaux et de la séquence des régimes alimentaires. (Effect of dietary energy content in the rabbit. Variations according to age of animals and feeding sequences.) Annales de Zootechnie 31, 233256.CrossRefGoogle Scholar
Lebas, F., Maitre, I., Seroux, M. & Franck, T. (1986). Influence du broyage des matières premières avant agglomération de 2 aliments pour lapins différant par leur taux de constituants menbraniares: digestibilité et performances de croissance. (Effect of the grinding of raw material before pelleting for two rabbit diets differing in their level of fibre: digestibility and growth.) 4èmes Journées de la Recherche Cunicole, Communication no. 9, pp. 9.19.13Paris: Institut Technique de l'Aviculture.Google Scholar
Longland, A. C., Close, W. H. & Low, A. G. (1989). The role of the large intestine in influencing the use of fibrous feeds by pigs. In Nutrition and Digestive Physiology in Monogastric Farm Animals pp. 111114. Wageningen: PUDOC.Google Scholar
Longstaff, M. & McNab, J. M. (1989). Digestion of fibre polysaccharides of pea (Pisum sativum) hulls, carrot and cabbage by adult cockerels. British Journal of Nutrition 62, 563577.CrossRefGoogle ScholarPubMed
Millard, P. & Chesson, A. (1984). Modifications to swede (Brassica napus L.) anterior to the terminal ileum of pigs: some implications for the analysis of dietary fibre. British Journal of Nutrition 52, 583594.CrossRefGoogle Scholar
Nyman, M. & Asp, N. G. (1985). Dietary fibre fermentation in the rat intestinal tract: effect of adaptation period, protein and fibre levels, and particle size. British Journal of Nutrition 54, 635643.CrossRefGoogle ScholarPubMed
Pond, W. G., Jung, H. G. & Varel, V. H. (1988). Effect of dietary fiber on young adult genetically lean, obese and contemporary pigs: body weight, carcass measurements, organ weights and digesta content. Journal of Animal Science 66, 699706.CrossRefGoogle Scholar
Ravindran, V., Kornegay, E. T. & Webb, K. E. (1984). Effects of fiber and virginiamycin on nutrient absorption, nutrient retention and rate of passage in growing swine. Journal of Animal Science 59, 400407.CrossRefGoogle ScholarPubMed
Rémésy, C. & Démigné, C. (1989). Effet des polysaccharides de soja ou de betterave sur le développement des fermentations caecales chez le rat. (Effect of polysaccharides from soya or beet-pulp on fermentative activity in the caecum of the rat.) Réunion de l'Association Française de Nutrition 30–31 May. Nantes: A.F.N.Google Scholar
Roth, F. X. & Kirchgessner, M. (1985). Digestibility and intestinal transit rate in pigs in relation to plane of feeding and crude fiber content of the diet. Zeitschrift für Tierphysiologie, Tierernährung und Futtermitelkunde 53, 254256.CrossRefGoogle Scholar
Sandberg, A. S., Andersson, H., Hallgren, B., Hasselblad, K., Isaksson, B. & Hulten, L. (1981). Experimental model for in vivo determination of dietary fiber and its effect on the absorption of nutrients in the small intestine. British Journal of Nutrition 45, 283294.CrossRefGoogle ScholarPubMed
Statistical, Analysis System (1985). SAS/STAT. Guide for Personnal Computers version 6. Cary, NC: SAS Institute Inc.Google Scholar
Van Soest, P. J. & Wine, R. H. (1967). Use of detergents in the analysis of fibrous feeds. 4. Determination of plant cell-wall constituent. Journal of the Association of Official Agricultural Chemists 50, 5055.Google Scholar