Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T11:30:53.806Z Has data issue: false hasContentIssue false

The effect of early postnatal undernutrition on the growth and development of the rat brain

Published online by Cambridge University Press:  09 March 2007

B. L. G. Morgan
Affiliation:
Department of Nutrition, Queen Elizabeth College, University of London, W8 7AH
D. J. Naismith
Affiliation:
Department of Nutrition, Queen Elizabeth College, University of London, W8 7AH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Rat pups were undernourished during the period of the brain growth-spurt by feeding their mothers a low-protein diet from the third day post partum.

2. The pups were killed on days 5,6,9,12,16,20 and 24 post partum, and their brains were analysed for protein, DNA, glycosides and glycoproteins. The activities of four enzymes involved in neurotransmission, and in the synthesis of glycolipids and myelin were also measured. Results of the analyses were compared with those obtained for pups that were suckled by well-nourished dams.

3. The brains of the undernourished pups contained substantially less protein and DNA; gangliosides and glycoproteins were also reduced.

4. All four enzymes showed lower peak activities in the nutritionally deprived animals, and the attainment of peak activity was retarded by several days.

5. These results suggest that undernutrition imposed during the brain growth-spurt leads to a deficit in the glial cell population and thus in the capacity to form myelin, and reduced deveiopment of cellular processes.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Adlard, B. P. F. & Dobbing, J. (1971). Brain Res. 28, 97.CrossRefGoogle Scholar
Altman, J. (1966). J. Comp. Neurol. 128, 431.CrossRefGoogle Scholar
Bass, N. H., Netsky, M. G. & Young, E. (1970). Archs Neurol., Chicago 23, 289.CrossRefGoogle Scholar
Bernhart, F. & Tomarelli, R. (1966). J. Nutr. 89, 495.CrossRefGoogle Scholar
Brenkert, A. & Radin, N. S. (1972). Brain Res. 36, 183.CrossRefGoogle Scholar
Burton, K. (1956). Biochem. J. 62, 315.CrossRefGoogle Scholar
Clark, G. M., Zamenhof, S., Van Marthens, E., Grauel, L. & Kruger, L. (1973). Brain Res. 54, 397.CrossRefGoogle Scholar
Cragg, B. G. (1972). Brain 95, 143.CrossRefGoogle Scholar
Croskerry, P. G., Smith, G. K., Shepard, B. J. & Freeman, K. B. (1973). Brain Res. 52, 413.CrossRefGoogle Scholar
Dekirmenjian, H. & Brunngraber, E. G. (1969). Biochim. biophys. Acta 177, 1.CrossRefGoogle Scholar
Dickerson, J. W. T., Dobbing, J. & McCance, R. A. (1967). Proc. Roy. Soc. B. 166, 396.Google Scholar
Dobbing, J. (1964). Proc. Roy. Soc. B 159, 503.Google Scholar
Dobbing, J. (1968). In Applied Neurochemistry, p. 287 [Davison, A. N. and Dobbing, J. editors]. Oxford: Blackwell.Google Scholar
Dobbing, J. (1970). Am. J. Dis. Child. 120, 411.CrossRefGoogle Scholar
Dobbing, J. (1972). Ciba Fdn Symp. no. 3, p. 9.Google Scholar
Dobbing, J. & Sands, J. (1973). Archs Dis. Childh. 48, 757.CrossRefGoogle Scholar
Dyson, S. E. & Jones, D. G. (1976). Brain Res. 114, 365.CrossRefGoogle Scholar
Fish, I. & Winick, M. (1969). Exp. Neurol. 25, 534.CrossRefGoogle Scholar
Klemperer, G. (1963). In Methods of Biochemical Analysis, vol. 1, p. 287 [Glick, D. editor]. New York: Interscience Publishers Inc.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Merat, A. & Dickerson, J. W. T. (1973). J. Neurochem. 20, 873.CrossRefGoogle Scholar
Naismith, D. J. (1971). Proc. Nutr. Soc. 30, 93A.CrossRefGoogle Scholar
Naismith, D. J., Akinyanju, P. A. & Yudkin, J. (1969). J. Nutr. 97, 355.CrossRefGoogle Scholar
Roukema, P. A. & Heijlman, J. (1970). J. Neurochem. 17, 773.CrossRefGoogle Scholar
Roukema, P. A., Van Den Eijnden, D. H., Heijlman, J. & Van Der Berg, G. (1970). FEBS Lett. 9, 267.CrossRefGoogle Scholar
Schengrund, C. L. & Nelson, J. T. (1975). Biochem. Biophys. Res. Commun. 63, 217.CrossRefGoogle Scholar
Schengrund, C. L. & Rosenberg, A. (1970). J. biol. Chem. 245, 6196.CrossRefGoogle Scholar
Schengrund, C. L. & Rosenberg, A. (1971). Biochemistry, Easton 10, 2424.Google Scholar
Sereni, F., Principi, N., Perletti, L. & Sereni, L. P. (1966). Biol. Neonate 10, 254.CrossRefGoogle Scholar
Stern, W. C., Forbes, W. B., Resnick, O. & Morgane, P. J. (1974). Brain Res. 79, 375.CrossRefGoogle Scholar
Stewart, R. J. C., Preece, R. F. & Sheppard, H. G. (1975). Br. J. Nutr. 33, 233.CrossRefGoogle Scholar
Suzuki, K. (1965). J. Neurochem. 12, 969.CrossRefGoogle Scholar
Suzuki, K. (1967). J. Neurochem. 14, 917.CrossRefGoogle Scholar
Svennerholm, L. (1964). J. Neurochem. 11, 839.CrossRefGoogle Scholar
Warren, L. (1959). J. biol. Chem. 234, 1971.CrossRefGoogle Scholar
Weseman, W., Henkel, R. & Marx, R. (1971). Biochem. Pharmac, 20, 1961.CrossRefGoogle Scholar
Wiegandt, H. (1967). J. Neurochem. 14, 671.CrossRefGoogle Scholar
Winick, M. (1969). J. Pediat., Springfield 74, 667.CrossRefGoogle Scholar
Zamenhof, S., Van Marthens, E. & Margolis, F. L. (1968). Science, N.Y. 160, 322.CrossRefGoogle Scholar