Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T01:54:47.590Z Has data issue: false hasContentIssue false

The effect of dose rate of 1-α-hydroxycholecalciferol on calcium and phosphorus metabolism in sheep

Published online by Cambridge University Press:  09 March 2007

G. D. Braithwaite
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A combination of a mineral balance and a radioisotope technique has been used to study the relationship between dose rate of 1-α-hydroxycholecalciferol (1α-OH-D3) and the magnitude and duration of its effect on the various processes of calcium and phosphorous metabolism in adult wether sheep.

2. The rate of absorption of Ca was markedly increased by treatment and maximum response occurred at the lowest dose rate.

3. Although sheep were already Ca-replete, the extra Ca absorbed was all retained and increased retention was brought about by a combination of an increase in bone accretion and a decrease in bone resorption. This finding conflicts with the generally-held belief that bone resorption is increased by cholecalciferol treatment.

4. The rates of absorption and retention of P were increased by 1α-OH-D3 treatment and maximum response occurred at the lowest dose rate.

5. That P absorption could be increased by treatment suggests that not all the available dietary P was absorbed in the control period.

6. Although the loss of endogenous P in the faeces was unaltered by treatment, the secretion of P into the gut was increased, and the increase was directly related to increased serum inorganic P concentration.

7. Nearly all the extra P absorbed was retained and increased retention was achieved by a combination of an increased incorporation into and a decreased loss from the non-exchangeable pools of bone and soft tissues.

8. The time interval taken for absorption rates of Ca and P to return to normal after the end of each treatment was related to the dose rate of 1α-OH-D3. Although higher dose rates had little effect on the magnitude of response, they did prolong slightly the duration of response.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Aubert, J.-P. & Milhaud, G. (1960). Biochim. biophys. Acta 39, 122.CrossRefGoogle Scholar
Barlet, J.-P. (1977). Annls Biol. Anim. Biochim. Biophys. 17, 363.CrossRefGoogle Scholar
Braithwaite, G. D. (1976). J. Dairy Res. 43, 501.CrossRefGoogle Scholar
Braithwaite, G. D. (1978). Br. J. Nutr. 40, 387.CrossRefGoogle Scholar
Braithwaite, G. D. (1979). J. agric. Sci., Camb. 92, 337.CrossRefGoogle Scholar
Braithwaite, G. D. & Glascock, R. F. (1976). Bienn. Rev. natn. Inst. Res. Dairy.Google Scholar
Braithwaite, G. D., Glascock, R. F. & Riazuddin, Sh. (1969). Br. J. Nutr. 23, 827.CrossRefGoogle Scholar
Braithwaite, G. D. & Riazuddin, Sh. (1971). Br. J. Nutr. 26, 215.CrossRefGoogle Scholar
Chen, T. C., Castillo, L., Korycka-Dahl, M. & DeLuca, H. F. (1974). J. Nutr. 98, 1056.CrossRefGoogle Scholar
DeLuca, H. F. (1975). Acta orthop. scand. 46, 286.Google Scholar
DeLuca, H. F. (1977). Adv. clin. Chem. 19, 125.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.CrossRefGoogle Scholar
Fox, J. & Care, A. D. (1976). In Calcified Tissues ‘1975’, p. 147 [Pors Nielson, S. & Hjorting-Hanson, , editors]. Copenhagen: FADL Publishing Co.CrossRefGoogle Scholar
Fraser, D. R. & Kodicek, E. (1973). Nature, New Biol. 241, 163.CrossRefGoogle Scholar
Gast, D. R., Marquardt, J. P., Jorgensen, N. A. & DeLuca, H. F. (1977). J. Dairy Sci. 60, 1910.CrossRefGoogle Scholar
Gueguen, L. (1963). Annls Biol. Anim. Biochim. Biophys. 3, 243.CrossRefGoogle Scholar
Harrison, H. E., & Harrison, H. C. (1961). Am. J. Physiol. 201, 1007.CrossRefGoogle Scholar
Holick, M. F., Taleva, T. E., Holick, S. A., Schnoes, H. K., DeLuca, H. F. & Gallagher, B. M. (1976). J. biol. Chem. 251, 1020.CrossRefGoogle Scholar
Larsson, S.-E., Lorentzon, R. & Boquist, L. (1977). Clin. Orthop. Relat. Res. 127, 228.Google Scholar
Lueker, C. E. & Lofgreen, G. P. (1961). J. Nutr. 74, 233.CrossRefGoogle Scholar
Manston, R. (1966). Br. vet. J. 122, 443.CrossRefGoogle Scholar
Norman, A. W. (1978). In Vitamin D, ch. 3, [Lawson, D. E. M., editor]. New York and London: Academic Press.Google ScholarPubMed
Parsons, D. H. (1968). Mathl. Biosci. 2, 191.CrossRefGoogle Scholar
Pierides, A. M., Simpson, W., Ward, M. K., Ellis, H. A., Dewar, J. H. & Kerr, D. N. S. (1976). Lancet i, 1092.CrossRefGoogle Scholar
Preston, R. L. & pfander, W. H. (1964). J. Nutr. 83, 369.CrossRefGoogle Scholar
Sachs, M.. Bar, A., Cohen, R., Mazur, Y., Mayer, E. & Hurwitz, S. (1977). Am. J. vet. Res. 38, 2039.Google Scholar
Sansom, B. F. (1977). Vet. Sci, Commun. 1, 323.CrossRefGoogle Scholar
Sansom, B. F., Allen, W. M., Davies, D. C., Hoare, M. N., Stenton, J. R. & Vagg, M. J. (1976). Vet. Rec. 99, 310.CrossRefGoogle Scholar
Shroder, J. D. & Hansard, S. L. (1958). J. Anim. Sci. 17, 343.CrossRefGoogle Scholar
Symonds, H. W. (1969). Res. vet. Sci. 10, 584.CrossRefGoogle Scholar
Tanaka, Y. & DeLuca, H. F. (1971). Arch Biochem. Biophys. 146, 574.CrossRefGoogle Scholar
Technicon Instruments Corporation (1967). Technicon Method Sheet N-4B. Tarry Tom, New York: Technicon Instruments Corporation.Google Scholar
Wasserman, R. H. (1975). Cornell Vet. 65, 3.Google Scholar
Wasserman, R. H. & Taylor, A. N. (1973). J. Nutr. 103, 586.CrossRefGoogle Scholar
Wong, R. G., Myrtle, J. F., Tsai, H. C. & Norman, A. W. (1972). J. biol. Chem. 247, 5728.CrossRefGoogle Scholar
Young, V. R., Lofgreen, G. P. & Luick, J. R. (1966). Br. J. Nutr. 20, 795.CrossRefGoogle Scholar
Young, V. R., Richards, W. P. C., Lofgreen, G. P. & Luick, J. R. (1966). Br. J. Nutr. 20, 783.CrossRefGoogle Scholar