Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T11:24:46.485Z Has data issue: false hasContentIssue false

The effect of digestibility and forage species on the removal of digesta from the rumen and the voluntary intake of hay by sheep

Published online by Cambridge University Press:  09 March 2007

E. M. Aitchison
Affiliation:
The Grassland Research Institute‡, Hurley, Maidenhead, Berkshire SL6 5LR
M. Gill
Affiliation:
The Grassland Research Institute‡, Hurley, Maidenhead, Berkshire SL6 5LR
M. S. Dhanoa
Affiliation:
The Grassland Research Institute‡, Hurley, Maidenhead, Berkshire SL6 5LR
D. F. Osbourn
Affiliation:
The Grassland Research Institute‡, Hurley, Maidenhead, Berkshire SL6 5LR
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The characteristics of digestion, passage and rumen fill of three hays: early- and late-cut perennial ryegrass (Loliurn perenne cv. Endura) and white clover hay (Trifolium repens cv. Blanca and Pronitro) were studied using six rumen-cannulated sheep fed at a restricted level of intake (18 g dry matter (DM)/kg live weight (LW) per d), in a two 3 x 3 Latin square design.

2. Voluntary intake of the same diets was measured using a further six non-cannulated sheep in a similar design.

3. Rate of digestion of the three hays was measured using dacron bags and the rates of digestion of DM and neutral-detergent fibre (NDF) for clover hay were significantly (P < 0.05 and P < 0.001 respectively) faster than those for the two grass hays whose rates did not differ. Rates of passage, determined using chromium-mordanted hay, did not differ between treatments.

4. Rumen pool sizes of DM, organic matter and fibre were generally greatest for the late-cut grass hay and lowest for the clover hay, while voluntary intake was highest (P < 0.001) for the clover hay (36.6 g DM/kg LW per d) and lowest for the late-cut grass hay (24.7 g/kg LW per d).

5. The net rate of removal of indigestible fibre from the rumen appeared to vary within the day, with maximal disappearance occurring during eating, followed by a lag phase between 5 and 10 h after feeding, with a second increase in rate between 10 and 24 h post-feeding.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Aitchison, E. M. (1985). A study of the removal of fibre from the rumen and voluntary intake of sheep eating hay diets. Ph.D. Thesis, University of Reading.Google Scholar
Alexander, C. L., Meyer, R. M. & Bartley, E. E. (1969). Journal of Animal Science 29, 746756.CrossRefGoogle Scholar
Bailey, R. W. (1967). New Zealand Journal of Agricultural Research 10, 1532.CrossRefGoogle Scholar
Baich, C. C. (1971). British Journal of Nutrition 26, 383392.Google Scholar
Balch, C. C. & Campling, R. C. (1969). In Handbuch der Tiernahrung, pp. 554579 [Lenkeit, W., Breirem, and Crasemann, E., editors]. Hamburg: Paul Parey.Google Scholar
Baumgardt, B. R. (1970). In Physiology of Digestion and Metabolism in the Ruminant, pp. 235253 [ Phillipson, A. T., editor] Newcastle upon Tye: Oriel.Google Scholar
Blaxter, K. L., Graham, N. McC. & Wainman, F. C. (1956). British Journal of Nutrition 10, 6991.CrossRefGoogle Scholar
Cammell, S. B. (1977). The Equipment and Techniques Used for Research into the Intake and Digestion of Forages by Sheep and Calves. Technical Report no. 24. Hurley, Berks: The Grassland Research Institute.Google Scholar
Christian, K. R. & Coup, M. R. (1954). New Zealand Journal of Science and Technology 36A, 328330.Google Scholar
Conrad, H. R. (1966). Journal of Animal Science 25, 227235.CrossRefGoogle Scholar
Dhanoa, M. S., Siddons, R. C., France, J. & Gale, D. L. (1985). British Journal of Nutrition 53, 663671.CrossRefGoogle Scholar
Evans, E. W., Pearce, G. R., Burnett, J. & Pillinger, S. L. (1973). British Journal of Nuirition 29, 357376.CrossRefGoogle Scholar
Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analyses. Agricultural Handbook no. 379. Washington, DC: US Department of Agriculture.Google Scholar
Kempthorne, O. (1952). The Design and Analysis of Experiments. New York: John Wiley.CrossRefGoogle Scholar
McBride, B. W., Milligan, L. P. & Turner, B. V. (1984). Canadian Journal of Animal Science 64, 8485.CrossRefGoogle Scholar
McDougall, E. I. (1948). Biochemical Journal 43, 99109.Google Scholar
MacRae, J. C. & Armstrong, D. G. (1969). British Journal of Nutrition 23, 377387.CrossRefGoogle Scholar
Mertens, D. R. (1973). Application of theoretical mathematical models to cell wall digestion and forage intake in ruminants. Ph.D. Thesis, Cornell University.Google Scholar
Mertens, D. R. & Ely, L. O. (1982). Journal of Animal Science 54, 895905.CrossRefGoogle Scholar
Moseley, G. & Jones, J. R. (1979). Research in Veterinary Science 27, 9798.CrossRefGoogle Scholar
Moseley, G. & Jones, J. R. (1984). British Journal of Nutrition 52, 381390.Google Scholar
Ørskov, E. R. & McDonald, I. (1979). Journal of Agricultural Science, Cambridge 92, 499503.Google Scholar
Osbourn, D. F., Terry, R. A., Outen, G. E. & Cammell, S. B. (1974). Proceedings of XIIth International Grassland CongressMoscow, Section 5, pp. 514519.Google Scholar
Penning, P. D. & Johnson, R. H. (1983). Journal of Agricultural Science, Cambridge 100, 133138.CrossRefGoogle Scholar
Phillipson, A. T. & Ash, R. W. (1965). In Physiology of Digestion and Melabolism in the Ruminant, pp. 97107 [Dougherty, R. W., editor]. London: Butterworths.Google Scholar
Poppi, D. P., Minson, D. J. & Ternouth, J. H. (1981). Australian Journal of Agricultural Research 32, 123137.CrossRefGoogle Scholar
Poppi, D. P., Norton, B. W., Minson, D. J. & Hendricksen, R. E. (1980). Journal of Agricultural Science, Cambridge 94, 275280.CrossRefGoogle Scholar
Reid, C. S. W., John, A., Ulyatt, M. J., Waghorn, G. C. & Milligan, L. P. (1979). Annales de Recherche Vétérinaire 10, 205207.Google Scholar
Robles, A. Y., Belyea, R. L. & Martz, F. A. (1981). Journal of Animal Science 53, 774779.Google Scholar
Ross, G. J. S. (1980). MLP: Maximum Likelihood Program. Harpenden, Herts: Rothamsted Experimental Station.Google Scholar
Siddons, R. C., Arricastres, C., Gale, D. L. & Beever, D. E. (1984). British Journal of Nutrition 52, 391401.CrossRefGoogle Scholar
Smith, L. W., Goering, H. K. & Gordon, C. H. (1972). Journal of Dairy Science 55, 11401147.CrossRefGoogle Scholar
Smith, L. W., Goering, H. K., Waldo, D. R. & Gordon, C. H. (1971). Journal of Dairy Science 54, 7176.Google Scholar
Tilley, J. M. A. & Terry, R. A. (1963). Journal of the British Grassland Society 18, 104111.Google Scholar
Uden, P., Colucci, P. E. & Van Soest, P. J. (1980). Journal of the Science of Food and Agriculture 31, 625632.Google Scholar
Ulyatt, M. J. & MacRae, J. C. (1974). Journal of Agricultural Science, Cambridge 82, 295307.CrossRefGoogle Scholar
Ulyatt, M. J., Waghorn, G. C., John, A., Reid, C. S. W. & Monro, J. (1984). Journal of Agricultural Science, Cambridge 102, 645657.CrossRefGoogle Scholar
Van Soest, P. J. (1975). In Digestion and Metabolism in the Ruminant, pp. 351365 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Warner, A. C. I. (1981). Nutrition Abstracts and Reviews 51, 789820.Google Scholar