Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T18:52:33.193Z Has data issue: false hasContentIssue false

Effect of dietary protein level and thyroxine on vitamin A depletion from liver in chicks

Published online by Cambridge University Press:  09 March 2007

I. Nir
Affiliation:
Department of Animal Nutrition and Agricultural Biochemistry, Hebrew University, Rehovot, Israel
I. Ascarelli
Affiliation:
Department of Animal Nutrition and Agricultural Biochemistry, Hebrew University, Rehovot, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of dietary protein level and supplementation with thyroxine and thiouracil on depletion of liver stores of vitamin A, on the percentage of liver vitamin A in the alcohol form and on the plasma level of vitamin A and protein has been studied in chicks. In an experiment with cockerels the relation was investigated between the vitamin A level of plasma and the electrophoretic pattern of its proteins.

2. Liver vitamin A depletion was considerably reduced by lowering the dietary protein level.

3. Protein malnutrition lowered the percentage of vitamin A found in the liver in the alcohol form.

4. Depletion of vitamin A from the liver was related to the percentage of vitamin A in the alcohol form.

5. Thyroxine increased both vitamin A depletion from the liver and the percentage of vitamin A in the alcohol form, whereas thiouracil had the opposite effect.

6. Plasma vitamin A, and plasma protein contents were significantly lowered in cockerels receiving a 5% protein diet. The drop in plasma protein level was essentially caused by a reduction of the albumin fraction. No significant change in the levels of globulins was observed even after a 4-week period of protein malnutrition.

7. When the dietary protein level was restored to normal both the albumin and vitamin A levels in plasma increased.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1966

References

Ames, S. R., Risley, H. A. &Harris, P. L. (1954). Analyt. Chem. 26, 1378.CrossRefGoogle Scholar
Arnrich, L. &Morgan, A. F. (1954). J. Nutr. 54, 107.CrossRefGoogle Scholar
Arroyave, G., Wilson, D., Méndez, J., Béhar, M. &Scrimshaw, N. S. (1961). Am. J. clin. Nutr. 9, 180.CrossRefGoogle Scholar
Arroyave, G., Wilson, D., Contreras, C. & Béhar, M. (1963). J. Pediat. 62, 902.CrossRefGoogle Scholar
Ascarelli, I., Budowski, P., Nir, I. &Bondi, A. (1964). Poult. Sci. 43, 370.CrossRefGoogle Scholar
Babaev, T. A. (1963). Vop. med. Khim. 9, 261.Google Scholar
Bagchi, K., Halder, K. &Chowdhury, S. R. (1959). J. Indian med. Ass. 33, 401.Google Scholar
Basu, N. M. &De, N. K. (1941). Sci. Cult. 6, 672.Google Scholar
Baumann, C. A., Foster, E. G. &Moore, P. R. (1942). J. biol. Chem. 142, 597.CrossRefGoogle Scholar
Cama, H. R. &Goodwin, T. W. (1949). Biochem. J. 45, 317.CrossRefGoogle Scholar
Chanda, R., Clapham, H. M., McNaught, M. L. &Owen, E. C. (1952). Biochem. J. 50, 95.CrossRefGoogle Scholar
Deshmukh, D. S., Malathi, P. &Ganguly, J. (1964). Biochem. J. 90, 98.CrossRefGoogle Scholar
Deuel, H. J. Jr., Hrubetz, M. C., Johnston, C. H., Rollman, H. S. &Geiger, E. (1946). J. Nutr. 31, 187.CrossRefGoogle Scholar
Dye, M., Bateman, I. &Porter, T. (1945). J. Nutr. 29, 341.CrossRefGoogle Scholar
Esh, G. C. &Bhattacharya, R. K. (1961). Ann. Biochem. exp. Med. 21, 157.Google Scholar
Federer, W. T. (1955). Experimental Design. New York: MacMillan.Google Scholar
Fraps, G. S. (1946). Archs Biochem. 10, 485.Google Scholar
Friend, C. J., Heard, C. R. C., Platt, B. S., Stewart, R. J. C. &Turner, M. R. (1961). Br. J. Nutr. 15 231..CrossRefGoogle Scholar
Ganguly, J., Krinsky, N. I., Mehl, J. W. &Deuel, H. J. Jr. (1952). Archs Biochem. Biophys. 38, 275.CrossRefGoogle Scholar
Garbers, C. F., Gillman, J. &Peisach, M. (1960). Biochem. J. 75, 124.CrossRefGoogle Scholar
Gornall, A. G., Bardawill, C. J. &David, M. M. (1949). J. biol. Chem. 177, 751.CrossRefGoogle Scholar
Grassman, W. (1956). Ciba Fdn Symp. Paper Electrophoresis, p. 2, London: J. and A. Churchill Ltd.CrossRefGoogle Scholar
James, W. H. &Elgindi, L. M. (1953). J. Nutr. 51, 97.CrossRefGoogle Scholar
Johnson, R. M. &Baumann, C. A. (1947). J. biol. Chem. 171, 513.CrossRefGoogle Scholar
Krinsky, N. I., Cornwell, D. G. &Oncley, J. L. (1958). Archs Biochem. Biophys. 73, 233.CrossRefGoogle Scholar
Moore, T., Sharman, I. M. &Ward, R. J. (1952). Biochem. J. 52, xii.Google Scholar
Rechcigl, M. Jr., Berger, S., Loosli, J. K. &Williams, H. H. (1962). J. Nutr. 76, 435.CrossRefGoogle Scholar
Sokoloff, L. &Kaufman, S. (1959). Science, 129, 569.CrossRefGoogle Scholar
Sokoloff, L. &Kaufman, S. (1960). Fedn Proc. Fdn Am. Socs exp. Biol. 19, 175.Google Scholar
Sokoloff, L. &Kaufman, S. (1961). J. biol. Chem. 236, 795.CrossRefGoogle Scholar
Sokoloff, L., Kaufman, S., Campbell, P. L., Francis, C. M. &Gelboin, H. V. (1963). J. biol. Chem. 238, 1432.CrossRefGoogle Scholar
Thompson, S. Y., Ganguly, J. &Kon, S. K. (1949). Br. J. Nutr. 3, 50.CrossRefGoogle Scholar
Vakil, U. K., Roels, O. A. &Trout, M. (1964). Br. J. Nutr. 18, 217.CrossRefGoogle Scholar
Wiese, C. E., Mehl, J. M. &Deuel, H. J. Jr. (1948). J. biol. Chem. 175, 21.CrossRefGoogle Scholar