Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T14:29:43.136Z Has data issue: false hasContentIssue false

The effect of dietary energy source on nitrogen metabolism in the rumen of sheep

Published online by Cambridge University Press:  09 March 2007

N. W. Offer
Affiliation:
Department of Biochemistry and Soil Science, University College of North Wales, Bangor, Gwynedd LL57 2UW
R. F. E. Axford
Affiliation:
Department of Biochemistry and Soil Science, University College of North Wales, Bangor, Gwynedd LL57 2UW
R. A. Evans
Affiliation:
Department of Biochemistry and Soil Science, University College of North Wales, Bangor, Gwynedd LL57 2UW
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Seven isonitrogenous diets were prepared containing soya-bean meal and dried grass either unsupplemented, or supplemented with wheat starch or paper or equal mixtures of both.

2. The diets were allocated according to a balanced incomplete block design to seven Clun Forest wether sheep, each fitted with a re-entrant duodenal cannula.

3. After each sheep had received a diet for 6 d, daily samples of digesta were collected automatically for the next 3 d.

4. The amounts of dry matter, gross energy and major nitrogenous components consumed in the diet, passing into the duodenum and excreted in the urine and faeces were determined.

5. A novel method was applied to estimate the proportion of the total amino acids passing into the duodenum which was of microbial origin.

6. The amounts of microbial total amino acids synthesized were compared with the amounts of energy disappearing in the rumen for each of the seven diets tested. For the starch- and paper-containing diets an average of 14.7 g microbial total amino acid passed into the duodenum per MJ energy disappearing in the rumen, whilst for the diets containing either paper or starch alone the mean value, 6.1 g/MJ, was significantly lower (P < 0.05).

7. The results of the experiment suggested that the energy released from a mixture of starch and paper was utilized more efficiently for microbial protein synthesis than when the energy was provided by supplements of either paper or starch alone.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Axford, R. F. E., Evans, R. A. & Offer, N. W. (1971). Res. vet. Sci. 12, 128.Google Scholar
Bergen, W. G., Purser, D. B. & Cline, J. H. (1968 a). J. Anim. Sci. 27, 1497.Google Scholar
Bergen, W. G., Purser, D. B. & Cline, J. H. (1968 b). J. Dairy Sci. 51, 1698.Google Scholar
Burris, W. R., Bradley, N. W. & Boling, J. A. (1974). J. Anim. Sci. 38, 200.Google Scholar
Chamberlain, D. G. & Thomas, P. C. (1974). Proc. Nutr. Soc. 33, 59A.Google Scholar
Chow, R. B. & Kassell, B. (1968). J. biol. Chem. 243, 1718.Google Scholar
Evans, R. A., Axford, R. F. E. & Offer, N. W. (1975). Proc. Nutr. Soc. 34, 65A.Google Scholar
Fawcett, J. K. & Scott, J. E. (1960). J. clin. Path. 13, 156.Google Scholar
Goshtasbpour-Parsi, B. G., Ely, D. G., Boling, J. A., Alderson, N. E. & Amos, H. E., (1974). J. Anim. Sci. 39, 643.Google Scholar
Hogan, J. P. & Weston, R. H. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 474 [Phillipson, A. T., editor]. Newcastle-upon-Tyne: Oriel Press.Google Scholar
Hoeller, H. & Harmeyer, T. (1964). Z. Vet. Med. Reike, A 3, 244.CrossRefGoogle Scholar
Hoogenraad, N. J. & Hird, F. J. R. (1970). Br. J. Nutr. 24, 119.CrossRefGoogle Scholar
Ibrahim, E. A. & Ingalls, J. R. (1972). J. Dairy Sci. 55, 971.Google Scholar
Liebholtz, J. (1972). Aust. J. agric. Res. 23, 1073.Google Scholar
Liebholtz, J. & Hartmann, P. E. (1972). Aust. J. agric. Res. 23, 1059.Google Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Aust. J. agric. Res. 23, 321.Google Scholar
Meyer, R. H., Bartley, E. E., Deyoe, C. W. & Colenbrander, V. F. (1967). J. Diary Sci. 50, 1327.Google Scholar
Miller, D. S. & Payne, P. R. (1959). Br. J. Nutr. 13, 501.Google Scholar
Offer, N. W., Evans, R. A. & Axford, R. F. E. (1972 a). Proc. Nutr. Soc. 31, 41 A.Google Scholar
Offer, N. W., Evans, R. A. & Axford, R. F. E. (1972 b). Proc. Nutr. Soc. 31, 104A.Google Scholar
Offer, N. W., Evans, R. A. & Axford, R. F. E. (1975). Proc. Nutr. Soc. 34, 67A.Google Scholar
Offer, N. W., Evans, R. A. & Axford, R. F. E. (1976). J. agric. Sci., Camb. 87, 567.Google Scholar
Oltjen, R. R., Slyter, L. L., Williams, E. E. & Kern, D. L. (1971). J. Nutr. 101, 101.Google Scholar
Pentz, E. I. (1969). Adv. Automated Analysis 1, 111.Google Scholar
Purser, D. B. & Buechler, S. M. (1966). J. Dairy Sci. 49, 81.Google Scholar
Sharma, H. R. & Ingalls, J. R. (1974). Can. J. Anim. Sci. 54, 157.Google Scholar
Siriwardine, J. A. de S., Thomas, A. J., Evans, R. A. & Axford, R. F. E. (1966). J. Sci. Fd. Agric. 17, 456.Google Scholar
Stevenson, A. E. & Clare, N. T. (1963). N.Z. Jl. agric. Res. 6, 121.Google Scholar
Thomas, A. J. (1970). Automation, Mechanisation and Data Handling in Microbiology, p. 107;London: Academic Press.Google Scholar
Weller, R. A. (1957). Aust. J. biol. Sci. 10, 384.Google Scholar
Williams, P. P. & Dinusson, W. E. (1973). J. Anim. Sci. 36, 151.Google Scholar
Yates, F. (1936). Ann. Eugen. 7, 121.Google Scholar