Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T01:59:29.988Z Has data issue: false hasContentIssue false

The effect of diet on microfaunal population and function in the caecum of a subterranean naked mole-rat, Heterocephalus glaber

Published online by Cambridge University Press:  09 March 2007

Rochelle Buffenstein
Affiliation:
Physiology Department, University of the Witwatersrand, Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
Shlomo Yahav
Affiliation:
Physiology Department, University of the Witwatersrand, Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of dietary fibre and starch content on digestibility, microfaunal population and caecal function was investigated in a subterranean mole-rat, Heterocephalus glaber (Rodentia). Mole-rats were fed on a diet of either sweet potato (neutral-detergent fibre (NDF) 65 g/kg dry matter (DM), starch 638 g/kg DM) or carrot (NDF 157 g/kg DM, starch 258.7 g/kg DM) for 4 weeks. Daily intake and faecal output were monitored. Thereafter caecal microfaunal population, density and function were assessed using light and scanning electron microscopy and by measuring both gas and short chain fatty acid (SCFA) production. A 2.4-fold increase in fibre and 2.5-fold decrease in starch content resulted in a decrease in caecal DM content (390 g/kg). A concomitant dramatic decline (by 93%) in ciliate protozoa with a corresponding 2-fold increase in bacteria also accompanied this change in diet. Fermentative efficiency as indicated by gas production was 2.6 times greater on a carrot diet than on sweet potato. Microbial fermentation resulted in higher SCFA concentrations on the carrot diet, with a 42 % reduction in SCFA concentration on the sweet potato diet. Here, SCFA contributed 5.1 % of daily energy expenditure and this increased 5.0-fold on the carrot diet. Caecal micro-organism function, therefore, played an important role in the nutritional physiology of these naked mole-rats, and enabled maximum utilization of the food substrate.

Type
Digestion in the Caecum and Large Intestine
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Bergen, W. E. & Yokoyama, M. T. (1977). Productive limits to rumen fermentation. Journal of Animal Science 46, 573584CrossRefGoogle Scholar
Buffenstein, R. & Yahav, S. (1991). Is the naked mole-ratHeterocephalus glaber an endothermic yet poikilothermic mammal? Physiological Zoology (In the Press).CrossRefGoogle Scholar
Carol, E. J. & Hungate, R. E. (1954). The magnitude of microbial fermentation in bovine rumen. Applied Microbiology 2, 205214.CrossRefGoogle Scholar
Clarke, R. T. J. (1977a). Gut micro-organisms. In Microbial Ecology of the Gut, pp. 3671 [Clarke, R. T. J. and Bauchop, T., editors]. New York and London: Academic Press.Google Scholar
Clarke, R. T. J. (1977b). Protozoa in the rumen ecosystem. In Microbial Ecology of the Gut, pp. 251275 [Clarke, R. T. J. and Bauchop, T., editors]. New York and London: Academic Press.Google Scholar
Coleman, G. S. (1980). Rumen ciliate protozoa. Advances in Parasitology 18, 121173.CrossRefGoogle ScholarPubMed
Cummings, J. H. & Englyst, H. N. (1987). Fermentation in the human large intestine and the available substrates. American Journal of Clinical Nutrition 45, 12431255.CrossRefGoogle ScholarPubMed
El Harith, E. A., Dickerson, J. W. T. & Walker, R. (1976). Potato starch and caecal hypertrophy in the rat. Food and Cosmetic Toxicology 14, 115121.CrossRefGoogle ScholarPubMed
El Harith, E. A. & Walker, R. (1977). Some factors influencing caecal enlargement induced by raw potato starch in the rat. Food Chemistry 2, 279289.CrossRefGoogle Scholar
Gross, J. E., Wang, Z. & Wunder, B. A. (1985). Effects of food quality and energy needs: changes in gut morphology and capacity of Microtus ochrogaster. Journal of Mammalogy 66, 661667.CrossRefGoogle Scholar
Herd, R. M. & Dawson, T. J. (1984). Fibre digestion in the emu, Dromaius novaehollandiae, a large bird with a simple gut and high rates of passage. Physiological Zoology 57, 7084.CrossRefGoogle Scholar
Hoover, W. H. & Heitmann, R. N. (1972). Effect of dietary fibre levels on weight gain, caecal volume and volatile fatty acid production in rabbits. Journal of Nutrition 102, 375380.CrossRefGoogle ScholarPubMed
Janis, C. (1976). The evolutionary strategy of the Equidae and the origins of rumen and caecal digestion. Evolution 30, 757774.CrossRefGoogle ScholarPubMed
Jarvis, J. U. M. & Bennett, N. C. (1990). Ecology and behaviour of the family Bathyergidae. In Biology of the Naked Mole-rat, pp. 6696 [Sherman, P. W., Jarvis, J. U. M. and Alexander, R. D., editors]. Princeton: Princeton University Press.Google Scholar
Kingdom, J. (1974). East African Mammals, vol. 11, part B, pp. 489494. New York and London: Academic Press.Google Scholar
Kurihara, Y., Eadie, J. M., Hobson, P. N. & Mann, S. O. (1968). Relationship between bacteria and ciliate protozoa in the sheep rumen. Journal of General Microbiology 51, 267288.CrossRefGoogle ScholarPubMed
Lovegrove, B. G. (1989). The cost of burrowing by the social mole-rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaher: the role of soil moisture. Physiological Zoology 62, 449469.CrossRefGoogle Scholar
McBee, R. H. (1970). Metabolic contributions of the caecal flora. American Journal of Clinical Nutrition 23, 15141518.CrossRefGoogle Scholar
McBee, R. H. (1977). Fermentation in the hindgut. In Microbial Ecology of the Gut, pp. 185222 [Clarke, R. T. J. and Bauchop, T., editors]. New York and London: Academic Press.Google Scholar
Orpin, C. G. & Letcher, A. J. (1978). Some factors controlling the attachment of the rumen holotrich protozoa Isotricha intestinalis and 1. prostoma to plant particles in vitro. Journal of General Microbiology 106, 3340.CrossRefGoogle ScholarPubMed
Parra, R. (1978). Comparison of foregut and hindgut fermentation in herbivores. In The Ecology of Arboreal Folivores, pp. 205229 [Montgomery, G. G., editor]. Washington, DC: Smithsonian Institute Press.Google Scholar
Porter, A. (1957). Entozoa and endophyta of the naked mole-rat. Proceedings of the Zoological Society, London 128, 515527.CrossRefGoogle Scholar
Rechkemmer, G., Ronnau, K. & Engelhardt, W. V. (1988). Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comparative Biochemistry and Physiology 90A, 563568.CrossRefGoogle Scholar
Ryle, M. & Ørskov, E. R. (1987). Rumen ciliates and tropical feeds. World Animal Review 64, 2130.Google Scholar
Sakata, T. (1987). Stimulatory effect of short chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. British Journal of Nutrition 58, 95103.CrossRefGoogle ScholarPubMed
Shoemaker, V. E., Nagy, K. A. & Costa, W. R. (1976). Energy utilization and temperature regulation by jackrabbits (Lepus californicus) in the Mojave desert. Physiological Zoology 49, 364375.CrossRefGoogle Scholar
Sibly, R. M. (1981). Strategies in digestion and defecation. In Physiological Ecology, an Evolutionary Approach to Resource Use, pp. 109139 [Townsend, C. R. and Calow, P., editors]. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Van Soest, P. J. (1982). Gasterointestinal fermentation. In Nutritional Ecology of the Ruminant, pp. 152229 [Van Soest, P. J., editor]. Corvallis, Oregon: O. and B. Books.Google Scholar
Vogels, G. D., Hoppe, W. F. & Stumm, C. K. (1980). Association of methanogenic bacteria with rumen ciliates. Applied and Environmental Microbiology 40, 608612.CrossRefGoogle ScholarPubMed
Weast, R. C. (1979). Handbook of Chemistry and Physics, 60th ed. Boca Raton: CRC Press Inc.Google Scholar
Wolin, M. J. (1979). The rumen fermentation: a model of microbial interactions in anaerobic ecosystem. In Advances in Microbial Ecology, pp. 4977 [Alexander, M., editor]. New York: Plenum Publication Corporation.CrossRefGoogle Scholar
Wyatt, G. M., Horn, N., Gee, J. M. & Johnson, I. T. (1988). Intestinal microflora and gastrointestinal adaptation in the rat in response to non-digestible dietary polysaccharides. British Journal of Nutrition 60, 197207.CrossRefGoogle ScholarPubMed
Yahav, S. & Choshniak, I. (1990). Response of the digestive tract to low quality dry food in the fat jird (Meriones crassus) and in the levant vole (Microtus guentheri). Journal of Arid Environments 19, 209215.CrossRefGoogle Scholar
Zar, J. H. (1984). Biostatistical Analysis. New Jersey: Prentice Hall.Google Scholar