Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T01:07:31.315Z Has data issue: false hasContentIssue false

Effect of diet and infusion of volatile fatty acids into the rumen on the concentration of plasma free amino acids in sheep

Published online by Cambridge University Press:  09 March 2007

J. R. Mercer
Affiliation:
Department of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
E. L. Miller
Affiliation:
Department of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of supplementing barley diets with urea (U), extracted decorticated groundnut meal (GNM) or Peruvian fish meal (PFM) on plasma free amino acid concentrations in sheep have been examined and the first limiting amino acid has been indicated by measuring the changes in the concentration of the plasma essential amino acids (PEAA) during a rumen infusion of a volatile fatty acid (VFA) mixture.

2. Three wethers fitted with rumen and re-entrant duodenal cannulas were given isonitrogenous, isoenergetic diets containing (g/kg dry matter (DM)) U 20, GNM 106 or PFM 78, the crude protein (nitrogen × 6.25) contents being 139, 145 and 148 respectively. The sheep were fed hourly, the mean daily dm intake being 0.634 kg.

3. Plasma concentrations of valine, threonine, lysine, isoleucine and leucine were linearly related to their concentrations in duodenal digesta.

4. A VFA mixture was infused into the rumen for 6 h to supply (mmol/min) acetate 1.47, propionate 0.22 and n-butyrate 0.27. Blood samples were taken 6 h before, during and 12 h after the end of the infusion.

5. The concentration of all PEAA decreased relative to the pre-infusion and post-infusion controls but there were no significant differences between diets.

6. The mean decreases in concentration averaged over all three diets showed that the decrease in concentration of methionine (41.5%) was far greater than for any other essential amino acid suggesting that under these conditions methionine was the first limiting amino acid.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Bergen, W. G., Henneman, H. A. & Magee, W. T. (1973). J. Nutr. 103, 575.CrossRefGoogle Scholar
Broderick, G. A., Satter, L. D. & Harper, A. E. (1974). J. Dairy Sci. 57, 1015.CrossRefGoogle Scholar
Burris, W. R., Boling, J. A., Bradley, N. W. & Ludwick, R. L. (1974). J. Anim. Sci. 39, 818.CrossRefGoogle Scholar
Burris, W. R., Bradley, N. W. & Boling, J. A. (1974). J. Anim. Sci. 38, 200.CrossRefGoogle Scholar
Denton, A. E., Gershoff, S. N. & Elvehjem, C. A. (1953). J. biol. Chem. 206, 455.CrossRefGoogle Scholar
Eskeland, B., Pfander, W. H. & Preston, R. L. (1974). Br. J. Nutr. 31, 201.CrossRefGoogle Scholar
Faichney, G. J. (1974). Aust. J. agric. Res. 25, 583.CrossRefGoogle Scholar
FAO (1970). FAO nutr. Stud. no. 24.Google Scholar
Harter, H. L. (1960). Biometrics 16, 671.CrossRefGoogle Scholar
Hill, D. C. & Olsen, E. M. (1963). J. Nutr. 79, 303.CrossRefGoogle Scholar
Hogen, J. P., Weston, R. H. & Lindsay, J. R. (1968). Aust. J. biol. Sci. 21, 1263.CrossRefGoogle Scholar
Longenecker, J. B. & Hause, N. L. (1959). Archs Biochem. Biophys. 84, 46.CrossRefGoogle Scholar
Mercer, J. R., Allen, S. A. & Miller, E. L. (1980). Br. J. Nutr. 43, 421.CrossRefGoogle Scholar
Miller, E. L. (1970). FAO Fish. Rep. no. 92.Google Scholar
Munro, H. N. & Thompson, W. S. T. (1953). Metabolism 2, 354.Google ScholarPubMed
Nimrick, K., Hatfield, E. E., Kaminski, J. & Owens, F. N. (1970). J. Nutr. 100, 1301.CrossRefGoogle Scholar
Offer, N. W., Tas, M. V., Axford, R. F. E. & Evans, R. A. (1975). Br. J. Nutr. 34, 375.CrossRefGoogle Scholar
Ohara, I. & Ariyoshi, S. (1979). Agric. Biol. Chem. 43, 1473.Google Scholar
Pion, R. & Fauconneau, G. (1966). In Amino Acids, Peptides, Proteines, vol. 6, p. 155 [Vigneron, M., editor]. Commentry: aec, Société de Chimie Organique et Biologique.Google Scholar
Potter, E. L., Purser, D. B. & Bergen, W. G. (1972). J. Anim. Sci. 34, 660.CrossRefGoogle Scholar
Potter, E. L., Purser, D. B. & Cline, J. H. (1968). J. Nutr. 95, 655.CrossRefGoogle Scholar
Purser, D. B. & Beuchler, S. M. (1966). J. Dairy Sci. 49, 81.CrossRefGoogle Scholar
Purser, D. B., Klopfenstein, T. J. & Cline, J. H. (1966). J. Nutr. 89, 226.CrossRefGoogle Scholar
Radcliffe, B. C. & Egan, A. R. (1974). Aust. J. biol. Sci. 27, 465.CrossRefGoogle Scholar
Reis, P. J. (1967). Aust. J. biol. Sci. 20, 809.CrossRefGoogle Scholar
Richardson, C. R. & Hatfield, E. E. (1978). J. Anim. Sci. 46, 740.CrossRefGoogle Scholar
Schelling, G. T., Hinds, F. C. & Hatfield, E. E. (1967). J. Nutr. 92, 339.CrossRefGoogle Scholar
Smith, R. E. & Scott, H. M. (1965). J. Nutr. 86, 45.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. The Principles and Practices of Statistics in Biological Research. San Francisco: W. H. Freeman and Co.Google Scholar
Stein, W. H. & Moore, S. (1954). J. biol. Chem. 211, 915.CrossRefGoogle Scholar
Swendseid, M. E., Tuttle, S. C., Drenick, E. J., Joven, C. B. & Massey, F. J. (1967). Am. J. clin. Nutr. 20, 243.CrossRefGoogle Scholar
Tao, R. C., Asplund, J. M. & Kappel, L. C. (1974). J. Nutr. 104, 1646.CrossRefGoogle Scholar
Theurer, B., Woods, W. & Poley, G. E. (1966). J. Anim. Sci. 25, 175.CrossRefGoogle Scholar
Wakeling, A. E., Lewis, D. & Annison, E. F. (1970). Proc. Nutr. Soc. 29, 60A.Google Scholar
Williams, A. F. & Smith, R. H. (1974). Br. J. Nutr. 32, 421.CrossRefGoogle Scholar
Windels, N. F., Meade, R. J., Nordstrom, J. W. & Stockland, W. L. (1971). J. Anim. Sci. 32, 268.CrossRefGoogle Scholar