Published online by Cambridge University Press: 08 March 2007
Rainbow trout has a limited ability to utilize digestible carbohydrates efficiently. Trout feeds generally contain high levels of DHA, a fatty acid known to inhibit a number of glycolytic and lipogenic enzymes in animals. A study was conducted to determine whether carbohydrate utilization by rainbow trout might be affected by dietary DHA level. Two low-carbohydrate (<4% digestible carbohydrate) basal diets were formulated to contain 1 (adequate) or 4 (excess)g/100g DHA diet respectively. The two basal diets were diluted with increasing levels of digestible starch (0%, 10%, 20% and 30%, respectively) to produce eight diets. These diets were fed to fish for 12 weeks at 15°C according to a pair-fed protocol that consisted of feeding the same amount of basal diet but different amounts of starch. Live weight, N and lipid gains, hepatic glycogen and plasma glucose values significantly increased, whereas feed efficiency (gain:feed) significantly decreased, with increasing starch intake (P<0·05). The retention efficiency of N (N gain/digestible N intake) improved with starch supplementation but was not affected by DHA level (P>0·05). Starch increased the activity of glucokinase, pyruvate kinase, glucose 6-phosphate dehydrogenase and fatty acid synthase (P<0·05) but did not affect hexokinase and malic enzyme activity. DHA had no effect on growth but increased plasma glucose and reduced carcass lipid and liver glycogen contents (P<0·05). Glycolytic and lipogenic enzymes were not affected by DHA level, except for pyruvate kinase, which was reduced by increasing DHA level. These results suggest only a marginal effect of dietary DHA on the ability of fish to utilize carbohydrate.